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Preface 
The aim of this document is to introduce and provide examples for using the Management 
Strategy Evaluation (MSE) software encapsulated within the aMSE R package (and 
associated required packages). While the aMSE package is aimed at abalone fisheries, it 
could also be applied to any hard to age, spatially complex invertebrate fishery such as Beche 
de Mer. Nevertheless, at least in this first edition, all examples will focus upon abalone 
fisheries, both real and hypothetical. 

What are Harvest Strategies? 

Formal Harvest Strategies (HS) have three components, the data used by the HS, the analyses 
or assessment used to produce the fishery performance measures and combine them if there 
are more than one, and the harvest control rule used to translate the output or final score from 
the analyses into a future catch level (Figure 1). They can be either model-based or empirical. 
Integrated size-based assessment models can be used with abalone fisheries but generally 
they tend to be managed using empirical harvest strategies, especially where an exploited 
species does not meet dynamic pool assumptions. 

 

 

Figure 1: A diagrammatic representation of the components of a formal Harvest Strategy (HS) as applied to Tasmanian 
abalone SAU. The three fishery performance measures used are Grad1, Grad4, and TargCE, each based on CPUE (see 
Bradshaw, 2018). 

 

Testing of Fishery Harvest Strategies 

At its heart, MSE is about testing harvest strategies using simulation. The need for such 
simulation testing arises because while harvest strategies are invariably devised with the best 
intentions to provide for sustainable fisheries management of profitable fisheries, even 
relatively simple systems can develop what are termed unintended consequences. While 
unintended outcomes can be benign, they can also lead to pathological behaviour, such as an 
inability to increase or decrease total allowable catches when such changes are needed. It is 
possible to apply new harvest strategies to real fisheries and discover their implications, both 
good and bad in real time, over a possibly large number of years. However, it is less risky to 
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simulate the fishery and its management under alternative harvest strategies and, at very least, 
eliminate the worst options while retaining those that appear beneficial. Enabling such 
simulations is the intent behind producing aMSE. 

The Design of the aMSE R Package 

Apparently, when writing software, one should start with a very precise specification of the 
intent of the software, which should define the inputs and how those are manipulated to 
generate the outputs. Unfortunately, in our current ‘real’ world, in terms of abalone (and 
every other hard-to-age, spatially complex invertebrate) it is clear that not everything that it 
would be useful to know is already known. In addition, the software is intended to be 
generally usable by, at least, all Australian abalone jurisdictions and this immediately meant 
that the software needed to be flexible and adaptable. Thus, rather than starting with a precise 
specification a more iterative design process was undertaken that could react to innovations 
such as providing clear descriptions of such things as environmental perturbations. 

The underlying population dynamics used to describe changes in the simulated abalone 
stocks (extremely hard to age both consistently and accurately) was based upon following 
how the numbers-at-size changed as a result of natural mortality, somatic growth, fishing 
mortality, recruitment, and small amounts of larval movement. The spatial complexity 
possible within each simulated fishery also had to be flexible and a scheme of sub-dividing 
each simulated quota zone into a set of spatial assessment units, each of which could contain 
a variable number of almost independent populations was adopted. The simplest arrangement 
possible within aMSE is now a Zone with a single spatial assessment unit (sau) with only a 
single population. The upper level of complexity has not been defined but in principle there 
could be dozens of sau with hundreds of populations. In reality, the difficulties in relating the 
simulation to a real fishery, i.e. conditioning the model on a real fishery is constrained by the 
availability, and spatial scale, of information and data) will be what places a limit on the 
spatial complexity adopted in any given case. 

The focus of this document is upon the aMSE software but the requirement of maintaining 
flexibility in its use led to the development of two new auxiliary R packages (see sizemod 
and makehtml) and the further development of two others (see codeutils and hplot). When 
conditioning the simulation model, so that it closely represents a real fishery, it was found 
that in order to mimic the observed dynamics of the known history of a given fishery it was 
necessary to estimate how recruitment varied through the time over which observations were 
available. Initially, this was attempted within the aMSE software, and this option is still 
available. However, it was eventually decided (iterative design) that a separate R package, 
now called sizemod, should be written. This is used to fit a fully articulated size-based 
integrated stock assessment model (Punt et al, 2013) to data available from each sau 
separately. This permits an estimate of the productivity of each sau along with providing for 
the best available description of the historical fishery data. Parameter settings optimized 
through sizemod are then passed to aMSE. Once all sau are thus conditioned and adapted 
within the aMSE framework, the MSE then projects that conditioned model forward under 
the control of the alternative harvest strategies so that comparisons of the outcomes can be 
made. As can be seen in the chapter titled Using sizemod to condition the SAU package, very 
different outcomes from the modelling can be obtained simply by selecting different values 
of natural mortality, steepness, and the hyperstability level of the CPUE. As none of these 
values are known with any confidence it is not sensible to recommend using sizemod in a 
formal stock assessment except, perhaps, in those SAU with large amounts of biological and 
fishery information and in a weight-of-evidence context. 
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An important aspect of any harvest strategy is that it ought to be adaptable and open to 
improvement. Hence, it was decided that the software code used to implement each 
jurisdiction’s harvest strategy would not be built into aMSE but would rather be one of the 
inputs from each jurisdiction. Initially, this took the form of what is known as a ‘source’ R 
file but eventually, for Tasmania, this was converted into yet another a specific R package 
TasHS (for the purposes of the examples in this guide an earlier version of the Tasmanian HS 
was produced, EGHS, which is the one to be used with this guide). This also meant that HSs 
developed by each jurisdiction could be maintained and managed more easily. It is 
recommended that each jurisdiction that wants to use aMSE should develop such a package, 
although the somewhat less efficient option of using a ‘source’ file of suitable functions 
remains. 

In addition, the other R packages that have been produced provide utility routines for general 
programming (codeutils) and plotting routines (hplot), while the third (makehtml) provides 
a convenient method for setting up internal websites that show the plots and tables of results 
across a number of different pages/tabs, which enable examination of results from single runs 
and comparisons. While this may all sound complex, worked examples in the pages that 
follow should clarify how these things interoperate. 

The Intended Users 

MSE can be a complex business (Punt et al., 2016). aMSE is written entirely in base R (R 
Core Team, 2024) and is open-source software. This means that anyone with a knowledge of 
R can discover how it has been implemented. In addition, it can be further developed and 
maintained by anyone with the correct expertise. But it does not have a nice shiny interface 
(which would need to have had horrendously complex input screens). Because of this a 
certain facility with the R language is required to run the software, though the threshold 
requirement is relatively low, and template R code files are provided for running the software 
(and can even be generated for a user by the software). Much of the difficulty or complexity 
in use is setting up each simulation to represent a real fishery. It must be emphasized that 
such representation (known as conditioning the operating model) need not always be highly 
specific. Simulation software can be used to explore the implications of many somewhat 
more abstract abalone-like fisheries rather than the specific Tasmanian western zone blacklip 
abalone fishery used in the examples. Describing the conditioning of the simulation model is 
an important part of this documentation. 

One reason aMSE does not have a nice ‘shiny’ graphical interface is to retain a high degree 
of flexibility during this phase in the evolution of this software. This implies that the user 
needs to understand much of that flexibility to ensure they do not inadvertently represent the 
fishery being simulated incorrectly. Ongoing developments are expected to include 
increasing the number of diagnostics that will highlight assumptions and constraints. 

Living Documentation 

aMSE is not designed to be a fixed or static piece of software. It is expected that new plots, 
tables, and other outputs will be produced by users and there is no reason these should not be 
included in the code base for everyone to use. Having common outputs, plots, and tables 
would make discussion and comparisons between jurisdictions and different users so much 
easier. For this reason, the series of Quarto documents that make up this document have also 
been placed onto a GitHub account, currently at 
https://www.github.com/haddonm/aMSEGuide  so they can be amended and improved 
whenever required. This documentation should therefore always be considered a draft that 
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can be improved. It is available as a readable product at 
https://haddonm.github.io/AMSEGuide/ from where a PDF of the whole can also be 
downloaded. 
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1. Introduction 

1.1 Fisheries Assessment and Management 

One of the fundamental problems within fisheries management is that it is difficult to 
measure the status of different harvested stocks directly because surveys are expensive and, 
despite the cost, remain uncertain. Fortunately, it is generally possible to infer their status 
from samples, or models fitted to data based upon samples, although these also only provide 
an uncertain view of a stock. Happily, developing longer time-series of fishery observations 
(such as catches, catch rates, age- or size-structure data, and many other types of observation) 
can improve our understanding and modelling of events (assuming the quality and coverage 
of such data is good enough - a very big assumption). Nevertheless, there always remains a 
degree of uncertainty in any stock or fishery assessment. Such issues are of even greater 
importance in the many data-poor or data-limited fisheries and species globally 
(Vasconcellus and Cochrane, 2005; Pikitch et al, 2012). Despite the prevalence of 
uncertainty, fishery managers are still required to make decisions. This uncertainty, and the 
consequent difficulties it leads to, have not always been recognized (Smith, 1988) though 
now the most effective fisheries management jurisdictions attempt to account for uncertainty 
in explicit ways. 

In the 19th century (and into the early 20th) many people believed that the exploitation of 
natural resources did not require management. This idea, which should now hopefully seem 
strange, has fortunately evolved into an acceptance that management of wild fisheries is 
essential, and a wide array of management approaches are now being used around the World 
(Smith, 1988; Hilborn, 2012). The objectives which systems of fisheries management attempt 
to achieve have also greatly changed through time. When declines in large fisheries were first 
identified at the end of the 19th century the focus mainly involved a combination of wanting 
to maintain catch rates (so as to fish economically) and to maximize the yields from different 
fisheries (Garstang, 1900). At that time the primary objective was to maximize yield, but it 
took some years before it was recognized that for many species applying more fishing effort 
did not necessarily lead to increased catches (the yield-per-recruit problem; Russell, 1931, 
Beverton & Holt, 1957). It is difficult now to grasp the limited and simplistic view of how 
fisheries ought to be managed that existed in the 1910s, and extended even up to the 1960s. 
Larger scale attention only began to be paid to fisheries dynamics and management after the 
late 1950s, with real progress only commencing in the 1980s onwards (Fournier and 
Archibald, 1982; Methot, 1989, 1990). 

Prior to the late 1950s most thought was given to increasing catches and the efficiency of 
fishing gear and it still seemed contrary to intuition to recommend limiting catches. For 
example, at the second FAO conference in 1946, immediately following the second world 
war, the FAO was strongly urging the development of fisheries as a source of protein and 
food: “The fishing grounds of the world are teeming with fish of all kinds. Fisheries are an 
international resource. In underdeveloped areas especially, the harvest awaits the reaper.” 
(FAO, 1985). The consequences of uninhibited fishing were poorly conceived at that time 
and attempts to correct the outcomes of such misconceptions from that time are on-going. 

Early deterministic stock assessment approaches effectively ignored uncertainty and tended 
to produce management advice based on the assumption that natural populations are in 
equilibrium with each other and with any fishing effort imposed on them (Schaefer, 1954, 
1957; Gulland, 1965; Megrey, 1989). Assumptions of equilibrium and stability are clearly 
only an approximation and are invalid in many cases but nevertheless this approach led to 
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concepts such as the Maximum Sustainable Yield (MSY), which related to catch levels, and 
𝐹௫, the fishing mortality which related to the effort expected to lead to the maximum 
yield. Unfortunately for many fisheries, catches relating to 𝐹௫ could be larger than the 
MSY. Both these concepts were early fisheries targets or objectives, with fisheries legislation 
in many countries still including MSY as a primary aim of management. Sadly, the same 
legislation often neglects to define the concept of MSY (although this can be interpreted as an 
advantage). In the 1970s it became apparent, following the collapse of a number of fish 
stocks, that MSY, as it was then interpreted, was not the safest objective to adopt (Larkin, 
1977) and more serious efforts were made to find safer alternatives. 

Although the concept of MSY is still invoked it has evolved into use as an upper limit to 
fishing mortality or has been redefined to account for risks of alternative catch levels (Smith 
and Punt, 2001). In the 1970s and early 1980s, input controls relating to effort, gear, vessel 
numbers, and closed seasons were the management tools in most fisheries and some of the 
more successful management objectives focussed on defining an optimum fishing mortality 
rate. This work led to the concept of 𝐹.ଵ, which despite being ad hoc, was an advance over 
𝐹௫ in terms of sustainability as well as profitability. It usually led to a large reduction in 
fishing effort (reduction in fishing mortality and costs) but only led to a minor loss in yield 
(see Hilborn & Walters, 1992, for definitions of such classical fishery objectives). Even 
though this was an improvement over 𝐹௫ or 𝐹௦௬ it was still based on the notion that fish 
stocks were able to achieve equilibrium with the fishing mortality imposed on them. While 
this was then assumed to be, at best, an approximation there was still a great deal of 
development needed to produce the methodologies required for taking uncertainty into 
account. 

The importance of acting to provide management advice in the face of uncertainty was a 
growing theme in fisheries resource management through the late 1980s and early 1990s. The 
need to act before scientific consensus could be achieved rather than calling for more 
research was identified as a key problem for management (Ludwig et al., 1993). The 
precautionary approach in fisheries is based upon the notion that a lack of scientific certainty 
about the risk of serious environmental damage must not be used as an excuse for not acting 
to prevent that damage (FAO, 1995, 1996, 1997). 

1.2 Formal Recognition of Harvest Strategies 

As stock assessments became more sophisticated so were the management options that were 
developed. In the late 1980s and early 1990s the effects of variability, uncertainty, and 
associated risks began to be addressed in stock assessments (Francis, 1992) and the notion of 
presenting a decision table of management options with their associated risks was also 
developed. Hilborn & Walters (1992, p453) defined a harvest strategy as: 

“…a plan stating how the catch taken from a stock will be adjusted from year-to-year 
depending upon the size of the stock, the economic or social conditions of the fishery, 
conditions of other stocks, and perhaps the state of uncertainty regarding biological 
knowledge of the stock.” 

The harvest strategies discussed at that time revolved mainly around the classical three: 
‘constant catch’ (e.g. TACs; output controls), ‘constant fishing mortality’ (e.g. 𝐹.ଵ; input 
controls), and ‘constant escapement’ (e.g. always leaving at least 75% of estimated Mackerel 
Icefish biomass in the Heard and McDonald Island fishery; mixed input and output controls). 
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Harvest strategies in the early 1990s focused mainly on setting out fishery objectives 
(defining biological reference points; Smith et al., 1993) and what constraints should be used. 
In more recent parlance, this was about determining how to assess each stock’s status and 
what limit and target reference points to put in place. These developments may have been 
encouraged, at least in part, by new legislation in the USA (the Magnuson & Stevens Act, 
1976, 2007) that required definitions of overfishing that would explicitly guard against 
recruitment overfishing (Mace & Sissenwine, 1993). 

A number of very influential documents were published by the FAO in the mid-1990s, 
including: the Code of Conduct for Responsible Fisheries (FAO, 1995), the Precautionary 
Approach to Capture Fisheries (FAO, 1996), and Fisheries Management (FAO, 1997); these 
latter two documents being parts of the Technical Guidelines for Responsible Fisheries series. 
The authors stated: “Long term management objectives should be translated into management 
actions, formulated as a fishery management plan or other management framework” (FAO, 
1995, p 11). Giving more details, the Guidelines appear to be one of the first documents to 
describe the components of what are now termed Harvest Strategies. 

The ‘Guidelines’ (FAO, 1996) identified the needs for: 

1) targets, described as the desired outcomes for a fishery, 

2) operational constraints or limits, described as the undesirable outcomes that are to be 
avoided, and 

3) control rules which specify in advance what action should be taken when specified 
deviations from the operational targets and limits are observed. 

Early work on simulation testing of management arrangements (now known as management 
strategy or management procedure evaluation) appears to have contributed to this approach to 
describing harvest or management strategies. Thus, in the FAO Guidelines it defines a 
management procedure as a description of the data to collect, how to analyze it, and how the 
analysis translates into actions. This is a standard way to describe a modern harvest strategy: 
define the data needed, the analysis of status relative to the target and limit reference points, 
and the control rules used to generate management advice from that status. However, in the 
FAO guidelines the emphasis given to management procedures was placed on the 
investigation of how uncertainties influenced the management process (which stemmed from 
how these management procedures were implemented in South Africa; Butterworth & Bergh, 
1993). 

The main difference to fisheries management brought about by the adoption of formal harvest 
strategies was the inclusion of explicit ‘decision rules’ or ‘harvest control rules’. Prior to the 
introduction of harvest strategies, the data required for stock assessments was certainly 
collected and the primary thrust of research was the development and articulation of 
improved stock assessment methodology. Unfortunately, what to do with those assessments 
to generate management advice sometimes varied from vague to completely unclear. With 
the addition of formal control rules, management responses become predetermined based on 
the outcome of the assessment. The use of a formal harvest strategy in a fishery represents a 
major change to management and constitutes the primary basis for improving the consistency 
or repeatability, predictability, and transparency of assessment and management. 
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1.3 Properties of Harvest Strategies 

An advantage of using formal harvest strategies is that the outcome of their application 
should not be dependent upon who applies them to data from a fishery. Given the same data 
collected from a fishery, anyone who applies a given harvest strategy should produce exactly 
the same management advice. In order for this to be the case requires harvest strategies, and 
their implementation, to have the following properties: 

1.3.1 Transparent 

The information requirements of each harvest strategy and the objectives being aimed for 
should be fully documented and publicly available. Assessments invariably use summarized 
data so confidentiality should not become an issue. Where confidentiality might become an 
issue (e.g. cpue standardization should use raw data from individual fishers), then formal 
external, yet confidential, review can avoid this issue. Ideally, if software is used in the 
application of the harvest strategy that too should be publicly available. Being open to critical 
review is essential for there to be trust that the management being recommended is free from 
potentially conflicted outside influence. All reviews take time, effort, and usually costs, so, in 
potentially contentious cases, care should be taken to ensure that a review is not introduced to 
delay decisions. One objective of every review should be to assess and maintain 
transparency. 

1.3.2 Repeatable 

Given the same information and an understanding of the harvest strategy, anyone should be 
able to generate the required management advice, and that advice should be the same 
irrespective of who does the work. It should make no difference to the outcome who is in the 
room when the work is completed and decisions are made. Transparency is critical to 
achieving this goal, and the consequent repeatability of the outcomes from a formal harvest 
strategy should instill greater confidence in the management objectives and management 
actions. 

1.3.3 Adaptable 

A harvest strategy should not be seen as a static invention, it must be open to improvements 
while retaining the properties of being fully and openly documented, and of being repeatable. 
Fisheries management must have the capacity of learning and improving as understanding 
concerning each fishery increases. Being open to review means that if an improvement can be 
suggested, by anyone, then a change could be made. In addition, directional environmental 
changes that have occurred in a noticeable manner over the last 50+ years mean that if 
productivity changes with location, then changes in expectations and hence in the objectives, 
targets, and limits for each fishery are also likely to need changing. 

1.3.4 Defensible 

The details and effectiveness of each harvest strategy must be defensible. Ideally, a harvest 
strategy should be simulation tested for effectiveness at meeting their objectives (using 
management strategy evaluation, MSE). Even in the absence of MSE, a harvest strategy’s 
performance should be monitored and reviewed regularly. The defensibility of a harvest 
strategy is also highly dependent on the other three properties. If they are not transparent, 
repeatable, and adaptable, then they are less defensible. 
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2. Management Strategy Evaluation 

2.1 Working with MSE 

After many years of using what turned out to be overly simplified objectives for commercial 
fisheries management, there has been a growing trend of explicitly defining the fishery 
management policy to be used in each jurisdiction. These policies tend to address issues 
relating to sustainability, managing risk factors, managing bycatch, and actions relating to 
threatened and endangered species. This is a significant improvement over vague 
exhortations to achieve the maximum sustainable yield for each species. In addition to the 
explicit statements defining management objectives, there is a move to introduce explicit and 
formal harvest strategies aimed at achieving those objectives. There are many possible 
approaches to developing empirical harvest strategies, with no, as yet, clearly preferred 
approaches. Unfortunately, unintended consequences are not uncommon when attempting to 
control or manage relatively complex natural systems so, generally, to avoid potentially 
disastrous outcomes, it is best to test and compare any new versions of an EHS and the 
candidate alternative management arrangements before implementing them. 

Comparing the relative effectiveness of alternative harvest strategies for particular fisheries 
generally requires the use of Management Strategy Evaluation (Smith, 1994; Punt et al. 2001; 
Haddon, 2007; Punt et al. 2016). As stated by Punt et al. (2016, p303): 

“Management strategy evaluation (MSE) involves using simulation to compare the relative 
effectiveness for achieving management objectives of different combinations of data 
collection schemes, methods of analysis and subsequent processes leading to management 
actions. MSE can be used to identify a ‘best’ management strategy among a set of candidate 
strategies, or to determine how well an existing strategy performs. The ability of MSE to 
facilitate fisheries management achieving its aims depends on how well uncertainty is 
represented, and how effectively the results of simulations are summarized and presented to 
the decision-makers. Key challenges for effective use of MSE therefore include 
characterizing objectives and uncertainty, assigning plausibility ranks to the trials considered, 
and working with decision makers to interpret and implement the results of the MSE.” 

The simulations involve using a mathematical model to mimic both the biological and 
fishery/fleet dynamics of the fishery being considered. This simulation model, usually termed 
the Operating Model, is either fitted to a real fishery or conditioned (its parameters adjusted) 
until its dynamic behaviour reflects the observed properties of a real fishery. Once 
appropriately conditioned (easily stated, not necessarily simple to do), the dynamic behaviour 
of the operating model is taken to represent reality and is used to simulate the operation of a 
fishery under the different harvest strategies (HS) being compared or tested. 

The essential aspect of such a simulation, that makes an MSE differ from a standard forward 
projection of a stock assessment under constant catch or effort (a classical risk assessment; 
Francis, 1992), is the built-in feedback of the regular management advice into the dynamics 
described by the operating model. The dynamics of the stock and fishery are simulated each 
year, the HS (data sampling, assessment/analysis, and harvest control rule) is applied 
however often the HS dictates, and the outcome of the specific HS is fed back into the 
operating model as a Total Allowable Catch or Effort, or some other management influence. 
Such inputs could be expected to alter the path of the expected dynamics (this constitutes the 
feedback loop). In this way, different HS can be expected to have different simulation 
outcomes over a set number of years (see Figure 2.1). 
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Not all management strategy evaluations involve simulating a real fishery. There are many 
general questions that can be answered using hypothetical fishery situations rather than 
simulating a specific fishery. In some of the examples used in this documentation only a 
portion of a real fishery is used, which is a mixture of realistic and unrealistic (because in 
reality the fleet dynamics used relates to a whole quota zone not just one or two sau). 
Nevertheless, such hypothetical situations can be used to explore the influence of different 
source of uncertainty on differing harvest strategies. 

2.1.1 Simpler is Not Necessarily Better 

MSE is often represented in an overly simplistic fashion leading to un-realistic expectations 
as in: ‘if a given harvest strategy has been MSE tested, and nothing untoward found, then it 
must be good’. However, it is important to remember that, as with any model, if an operating 
model does not include a particular feature in its dynamics (e.g. does not include depensation 
in its recruitment dynamics, or non-linearity in the relationship between stock biomass and 
CPUE) then those features can, obviously, never be expressed in the simulations. The 
structure of an operating model needs to be well documented, and its limitations understood, 
so that the domain of the MSE testing for each HS is known. This is especially important to 
understand because harvest strategies that have been MSE tested are generally held in 
relatively high regard. However, the completeness of any MSE testing will always be 
constrained to the dynamics described by the operating model, so care in its design is 
required and that design needs to be defensible (see Operating Model Structure). 

2.1.2 Harvest Strategies 

In the literature a harvest strategy (Smith, 1997), or HS, aimed at achieving a defined policy 
objective, has a minimum of three components: 

1. Specified and representative data collected from the fishery being evaluated, 

2. An assessment or analysis of the fishery, based on the data collected, that estimates its 
status relative to pre-defined target and limit reference points, 

3. A formal harvest control rule (decision rule) that defines previously agreed 
management advice (future catch or effort levels, etc) in response to a stock’s status 
relative to its reference points. 

Each of the three components can be varied in multiple ways and, strictly, each such 
combination would constitute a different harvest strategy (HS). Therefore, for any fishery, 
there will be multiple potential options available for the management. Often, fishery 
management involves balancing trade-offs between conflicting objectives. For example, with 
a valuable species such as abalone (e.g. blacklip abalone, Haliotis rubra) the two objectives 
of maintaining a sustainable stock and maximizing the profitable catch are potentially in 
conflict, or at least can be when considered across different time-frames. Such potential 
conflicts within fisheries was one reason why management strategy evaluation was developed 
to enable the comparison of how alternative harvest strategies perform relative to different 
objectives. MSE methods originated in the International Whaling Commission, which had its 
own contentious issues (Punt and Donavan, 2007). It is used to select or develop an optimum 
HS, or at least reject sub-optimal ones. 
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2.1.3 Management Strategy Evaluation of Abalone Fisheries 

There have been previous attempts to conduct management strategy evaluation (MSE) of 
alternative harvest strategies for abalone fisheries in Australia (Haddon et al., 2013; Haddon 
and Helidoniotis, 2013; Haddon and Mundy, 2016). In the current project, an R package 
aMSE (Haddon, 2024) has been developed, and has evolved, from those earlier attempts. 
This current document constitutes part of that documentation. Other complementary R 
packages (codeutils, hplot, makehtml, and sizemod, (Haddon, 2024b, c, d, e), each with 
their own documentation) have also been generated or modified from earlier versions to assist 
with conditioning the operating model within the MSE, and the production of a standard set 
of summary figures and model information. 

An example R package EGHS has been developed that implements a simpler version of the 
Tasmanian abalone harvest strategy in a manner useful for the examples described in this 
guide (Haddon & Mundy, 2024b). Ideally, each jurisdiction that uses aMSE would 
encapsulate their own harvest strategies into such a package, as this simplifies maintenance as 
well as the use of aMSE. The required documentation within each formal R package for an 
HS, and the possibility of including a vignette with more details, means that the workings of 
the HS in each case could be explained and made clear. A formal package avoids the 
possibility of source files of R functions being modified such that different users 
inadvertently end up using a different HS structure. Maintenance and possible developments 
within the code can also be managed more effectively when it is structured as a formal 
package. 

The R code in the aMSE package is a greatly developed and translated version of the 
relatively undocumented Abalone MSE code developed and used in Haddon et al (2013), 
which had been developed further, with only slightly better documentation, in Haddon and 
Mundy (2016). The essential equations describing the operating model dynamics used in 
those earlier projects were formally published in Haddon and Helidoniotis (2013). Those 
dynamics have since been found to be overly complex in that they used separate vectors of 
numbers-at-length to describe the cryptic and emergent components of each of the many 
abalone populations simulated to make up a simulated quota zone. Other, unpublished, work 
demonstrated that this separation has no real advantages for representing the stock dynamics 
but does have serious computational disadvantages. The new aMSE package reflects this by 
changing the previous equations so they now use only a single vector of numbers-at-length to 
contain the dynamics for each year. In addition, other methods are being incrementally 
implemented with the intent of speeding the computations. Previously, it could take hours to 
appropriately explore even a single HS, which now, depending on the complexity of the HS, 
can take only minutes to run a single scenario made up of several hundred replicate runs. 

The underlying objective in the current aMSE R package is to enable the simulations and 
MSE testing of different HS to proceed by users familiar with R, but without months of 
introductory training with the bare software code-base, as needed previously. This document 
is a first attempt to provide the background required for others to successfully run the 
software. While writing this material, sections will be borrowed freely from both Haddon et 
al (2013) and Haddon and Mundy (2016), wherever it is appropriate. These two projects, in 
which abalone MSE code was first developed, did not include sufficient time or resources to 
generate a more user-friendly or documented code-base for the software. Relatively user-
friendly software improves the capacity of other fisheries assessment scientists to apply these 
methods to more stocks or to new HS currently being developed. By making the new R 
package open-source, freely available, and fully documented, the intent and hope is that more 
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people will find the methods workable. By being defined within open-source software this 
also allows for future developments of the package by others should they wish. One primary 
objective is to allow users to write their own functions or R packages describing any new 
harvest strategy they might develop. 

2.1.4 Difficulties Inherent with MSE Testing Abalone HS 

The phrase ‘abalone stock’ sounds meaningful and most would consider this to refer to the 
standard notion of populations of a species having sufficient genetic homogeneity to 
represent a connected reproductive whole. However, as demonstrated by Miller et al (2009; 
2014), genetic studies indicate that abalone populations (at least of blacklip and greenlip 
abalone) are meta-populations made up of multiple, what might be termed, micro-stocks. 
Such micro-stocks are functionally independent, while remaining genetically connected such 
that divergence is not occuring In effect, the management areas for which total allowable 
catches (TACs) and minimum legal sizes (MLS or LML) are set are spatially recognizable 
and convenient areas or zones that are composed of numerous mostly isolated micro-stocks. 
The solution adopted in Haddon et al (2013) and Haddon and Mundy (2016) was to generate 
an operating model made up of numerous discrete populations of abalone, each with their 
own set of biological properties and fishery productivity that reflected properties observed 
within real fisheries. One disadvantage of this approach was that there was no chance of 
fitting this model to a real fishery as no real fishery has sufficient data available concerning 
differences in growth, size-at-maturity, and other matters relating to productivity. This meant 
that one could only attempt to condition the operating model to have outputs and properties 
that approximately matched a real fishery. Of course, as those properties were defined at a 
large geographical scale there would be no single or unique way of setting up a large number 
of individual populations to mimic such emergent or sum-of-the-parts properties. 

One time-consuming option to counter this problem would be to set up the operating model’s 
underlying populations in a number of ways to determine whether each different arrangement 
leads, effectively, to the same outcome. While this would be time-consuming it used to be the 
only way available of characterizing the full uncertainty relating to the spatial dynamics. 
There is now the possibility, however, that the use and collection of the GPS data-logger data 
can assist with the conditioning of the operating model, by allowing populations at a smaller 
scale to be more fully characterized, rather than at the scale of statistical reporting blocks 
within quota zones. Now there are ten+ years of such data in Tasmania, this database has now 
been used to define areas of persistent productivity that represent the multiple populations 
used to define the spatial assessment units (SAU) within the quota zone. Using the longer-
term yield obtainable from each such smaller region as a proxy for their relative productivity 
provides an insight into the required dynamics from each of these ‘populations’ (or ‘areas of 
persistent production’). This is discussed in the sections dealing with conditioning the 
operating model. 

2.1.5 Applications in Victoria 

During the research described in Haddon and Mundy (2016), an opportunity arose to apply 
that abalone MSE to some individual reefs within Western Victoria to examine how recovery 
might proceed under different harvest strategies following the viral destruction brought about 
by the AVG virus (Haddon & Helidoniotis, 2014). This differed from the applications in 
Tasmania as it was focussed solely on one reef complex, known as The Crags. While the 
operating model was still only conditioned on reality (rather than fitted) using the biological 
properties known for the abalone on The Crags, more time was spent improving the 
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comparison of the length composition and historical performance of the fishery. This could 
be done by selecting combinations of simulated populations whose combined dynamics more 
closely followed trends in catches and size-composition through time. However, this process 
was very time-consuming, so the objectives of each study need to be made clear and explicit 
before embarking on such detailed conditioning. 

2.1.6 Why is the Code so Specialized 

To date, one reason that running an MSE remains relatively specialized and esoteric is that 
the simulation framework needs to be able to simulate a wide range of processes (see 
Figure 2.1). These processes include a) the dynamics of the selected biological stock, b) the 
dynamics of the fishery imposed on the stock (the fleet dynamics), c) the generation of 
simulated fishery data from the fishery, d) the stock assessment or analysis applied to that 
data, and e) the control rule used to modify the present management options. For abalone this 
generally means changing the TAC, which is then fed back into the dynamics of the stock in 
a feedback loop within the modelling framework (Punt et al, 2016). 

Developing and using such a complex software framework entails specialized expertise. The 
disadvantage of this is that it constrains its use with real fisheries and limits future 
developments. This is the primary reason for attempting to translate the MSE code into a 
documented R package. If more people can more easily take on the application of using the 
management strategy evaluation framework to explore management options for abalone 
stocks this should increase the chances of the adoption of improvements in management. 

 

 

Figure 2.1: A diagrammatic representation of the main components of an MSE simulation framework, such as used with 
abalone, and how the feedback cycle operates during the simulations. Redrawn from Haddon et al, 2013 
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2.2 The Operating Model Structure 

The operating model (OM) requires conditioning on a selected abalone fishery because the 
OM acts as a proxy for reality in the simulations. The task of the OM is to model the stock 
dynamics across all the micro-stocks embedded in the framework. Currently, a selected 
abalone fishery zone can have 10s or 100s of sub-populations, each with their own defined 
properties reflecting somewhat different growth, maturity, and other details relating to 
productivity. However, such a simulation would be extremely complex to condition to a 
specific fishery simply because the data requirements would be enormous. To define the 
operating model within the MSE, the number of populations (numpop in the R code) need to 
be specified and how these are conditioned will, obviously, greatly influence the outcomes. 

The original abalone MSE (Haddon et al, 2013) was designed for use with Tasmanian 
blacklip abalone stocks. Spatially this was structured as statistical blocks within quota zones. 
In Tasmania, quota zones were introduced from 2000 onward whereas the statistical blocks 
have been extant since 1965 (Anon, 1966). Biological data was available from many sites 
around Tasmania although it tended to be summarized at a block level. Each statistical block 
could be simulated as containing multiple populations (areas of persistent productivity), and 
each population has its own set of properties with many such properties relating to the 
productivity. To attempt to capture some of the between block variations in biological 
properties each block simulated was given its own set of average properties. These included, 
for many of the properties, a definition of a statistical distribution to describe the expected 
distribution of values across contained populations, for such things as the growth parameters, 
the parameters relating to maturity-at-size, and details of the stock recruitment relationship. 
Thus, each sub-set of populations (in Tasmania representing a statistical block but elsewhere 
they might represent any spatial assessment unit), was sampled from selected distributions 
that had been conditioned on what is known about the fishery being simulated. There is also 
the option of specifying particular values of the productivity parameters (growth, maturity, 
recruitment) for each ‘population’ (see the chapter on Conditioning on Populations). 

Unfortunately, in fisheries management in general, and abalone fisheries in particular, the 
terminology used to describe different management details and concepts is not standardized 
across jurisdictions. Thus, while the term Zone is used widely to describe a geographical area 
over which a particular quota/TAC may be taken, the names given to sub-zones within zones 
differs between jurisdictions. The statistical block from Tasmania is not equivalent to the 
reef-code from Victoria, although it is closer to the spatial assessment unit from South 
Australia, though tend to be larger than the spatial management units in Central Victoria. 
Similarly, in Tasmania, the phrase the Legal Minimum Length (LML) is used to define legal 
size limits, which is equivalent to the Minimum Legal Length (MLL), and other such 
abbreviations from other jurisdictions. In aMSE we have used Zone for the largest scale of 
management, sau for the current spatial scale of assessment (sau can either be capitalized or 
not), and LML for the legal minimum length. When using the MSE, people in different 
jurisdictions should hopefully be able to manage any required translation without excessive 
indignation; it is the concept that matters not the word or phrase. 

In an operational simulated zone different SAUs are likely to have different numbers of 
contained populations, and the populations are likely to be of very different sizes, each 
population with its own particular properties. Within the Tasmanian application of aMSE, the 
populations have been defined from the GPS data-logger information and are more akin to 
‘areas of persistent productivity’. 
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Figure 2.2: A diagrammatic representation of a simulated zone made up of four spatial assessment units (SAUs) each made 
up of a number of separate populations, each with its own properties. Redrawn from Haddon et al, 2013. 
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3. Using aMSE 

3.1 A Worked Example 

Rather than continue with theoretical considerations we will begin working through an 
example MSE run in some detail. In this way users will see what actions are needed in 
practice rather than deal with more abstract notions. During the development of the aMSE R 
package for FRDC 2019-118, the Tasmanian western zone was conditioned on both 
biological and fisheries data to provide for further development and testing of the software. 
The summary data required are now included as default settings in the ctrlfiletemplate() and 
datafiletemplate() functions. In addition, we can also use the data(lfs) internal data-set and 
the function rewritecompdata() to generate the size-composition data required. 

In this chapter, we will use these functions to produce a working example scenario that will 
provide an overview of what is needed to use the software and what to expect to come out of 
it when run. It is recommended that the help for each function and data-set mentioned in this 
documentation be read for a fuller understanding of what is going on. For example, after 
running library(aMSE), typing ?rewritecompdata, or whatever function name is of interest, 
into the RStudio console - see the chapter A Non-Introduction to R in Haddon (2021) for 
details about examining R code within a package. To read a list of all visible functions within 
a loaded package, in the console type ?codeutils (or whichever package is of interest). Its 
help screen should open. Scroll to the bottom and click on the ‘Index’ within [Package 
codeutils version 0.0.16 Index] and a listing of each function and its title will appear. An 
alternative approach is to use ls(“package:aMSE”) or ls.str(“package:aMSE”). The latter 
also provides the syntax of each function. 

3.1.1 Requirements to Run aMSE 

Before running the example, it is, of course, necessary to install the required R packages 
containing the software used. The following description will continue under the assumption 
that the user will be using R with RStudio (see https://posit.co/). If some other development 
environment is being used, then it will be assumed that the user will be able to adapt the 
following to their own system. 

It is necessary to install the following R packages (and their dependencies). 

The first two can be downloaded from CRAN in the usual way. In RStudio, use the Packages 
tab and click on Install, then type their names in the input box with a space between each one: 

 rmarkdown required for the vignettes within aMSE. 
 knitr required for the vignettes and for the kable function that is used in the output 

.html files to generate readable tables. 

Four packages specific to aMSE are required for all jurisdictions (aMSE, codeutils, hplot, 
and makehtml). The first R package, aMSE is one of the outputs from FRDC project 2019-
118, codeutils and hplot are earlier packages that now contain extra functions added during 
the execution of 2019-118. makehtml was developed for other uses and is simply used by 
aMSE to generate the internal websites that display the results. In addition, a fifth user-
supplied package (or R-source file) is needed, which contains functions implementing the 
Harvest Strategy for the jurisdiction of interest (see the JurisdictionHS_Requirements 
chapter), here we will use the EGHS package. The four aMSE related R packages are 
available through either installation or cloning from the GitHub account at 
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https://www.github.com/haddonm, or they can be installed from the build source files (ending 
in tar.gz) located in the directory: dropbox/National_abalone_MSE/aMSE_files. Obviously, 
the EGHS package is only required if the user is intending to use or explore the Tasmanian 
harvest strategy. 

 aMSE is the primary package for running the MSE, it contains the functions and some 
data-sets that drive the MSE code-base. 

 codeutils is a package containing (surprise) an array of utility functions used especially 
when reading files, parsing text, and so on. 

 hplot is a package containing functions written in base R to assist with plotting various 
types of specialized graphics that aMSE uses. 

 makehtml is a package used to automatically generate the HTML and CSS files that 
make up the summary internal web-page for displaying the many results from single 
scenarios using the MSE and, similarly, when comparing scenarios. 

If installing from the R source files one would need to have copies of the latest version of 
aMSE and dependent packages sourced using the GitHub link above (where the version 
number is at least that shown or larger, which would imply more recent): 

 aMSE_0.3.5.tar.gz, 
 codeutils_0.0.15.tar.gz, 
 hplot_0.0.19.tar.gz, 
 makehtml_0.1.2.tar.gz, and, if using the Tasmanian HS, 
 EGHS_0.1.15.tar.gz. 

In RStudio, under the Packages tab one first presses the Install button and then uses the 
install from option box that pops up (each users library location will likely differ): 

 

Figure 3.1: The Install Packages interface from RStudio. The dropdown arrow is used to select ‘Package Archive File (.zip; 
or .tar.gz)’, and then you browse to point the box at the required source file (R is now version 4.4.1). 

3.2 Running aMSE 

3.2.1 Organize Scenario Results 

The number of possible scenarios it is possible to generate in a relatively short time is very 
large so to facilitate making comparisons as simple as possible, it is best to be organized 
about how to save the results for each scenario. The sub-directory name and path for all the 
input files and the results that follow for a given scenario is named in the code as the rundir 
(for hopefully obvious reasons). For example, in the text below we will introduce what will 
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be termed the ‘EG’ sub-directory (EG as in example). So, the rundir would be the generic 
path leading to all the scenario sub-directories combined with EG/, the actual scenario in this 
case. The scenario name EG/ is known as the postfixdir, while the generic path to all scenario 
sub-directories is the prefixdir. On the computer in which this example is being developed the 
prefixdir is, in fact, pathtopath(getDBdir(),“A_CodeUse/aMSEUse/scenarios/”) (note that 
the R / sub-divider can, as usual, be replaced by the double backslash, \\, if that is preferred; 
the getDBdir() function finds the path to the DropBox directory, to use a different prefixdir 
then define it however you wish). The pathtopath() function combines the character strings 
irrespective of what sub-divider is used or what each component starts with or ends with; In 
each case the sub-dividers should not be mixed as in / with \\. 

Graphically, this can all be represented, as an example, so that the prefixdir would be: 

..DropBox/A_CodeR/aMSEGuide/runs 

and sub-directories below the ‘runs’ sub-directory might be: 

 runs/EG 
 runs/EGM12 
 runs/EGM3 
 runs/EGMall 
 .. 

which indicates four sub-directories where EG is the example basecase where none of the 
meta-rules are used. The meta-rules are used to modify the outcome of the analysis of the 
three fishery performance measures to more closely match the desired HS objectives. In the 
EGHS there are currently three meta-rules, each described later when comaprisons between 
HS will be made. The EGM12 is where only meta-rules 1 and 2 are used, similarly EGM3 
and EGMall are where meta-rule 3 only is used and all meta-rules are used, respectively. In 
all cases natural mortality = 0.15, steepness = 0.7, and the hyperstability lambda = 0.75 (see 
the chapters on conditioning the operating model to make sense of those parameters. These 
four scenarios can then be compared to determine which had the most effects that best 
matched the desired objectives of the harvest strategy. When dealing with Windows 
machines a useful shortcut is to realize the classical “~” used by Unix and Linux systems, 
refers to the user’s “Documents” directory. Thus, on my own computer, in R, 
path.expand(“~”) gives rise to “C:/Users/Malco/Documents” (partly because Windows 11 is 
pathetic and its default user directory cannot spell Malcolm). Of course, this being Microsoft, 
one cannot rename either the default ‘user’ or the ‘Documents’ directories but it can be used 
if required. 

3.2.2 A Possible Workflow 

Once the R packages are installed then a potential workflow might begin with these nine 
steps (see the R code chunks below in Section 3.3 for code details): 

1. For each scenario to be considered, select or create a directory somewhere in your own 
system that will become the rundir within which the control file and the data files are 
placed (and all the results will be written as separate files). The directory path 
pointing to the different scenarios, each in their own rundir, is termed the prefixdir, 
which in the example to follow will be 
C:/Users/Malco/Dropbox/A_CodeR/aMSEGuide/runs/, but obviously a user will need 
to set up their own directory structure. One then identifies a postfixdir, which is 
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appended to the prefixdir to form each rundir, so, initially, here we will have a 
postfixdir = EG/. If one then uses the function confirmdir(), it either confirms that the 
rundir exists or it asks whether you would want to create it, after which it creates that 
sub-directory ready for your work. Again, read the function’s help for more options, 
and/or use ?confirmdir. If the ‘ask’ argument is set FALSE then it will just create a 
missing directory without asking, so check the spelling of your postfixdir first if you 
use that confirmdir() option. 

In the text below (section 3.3) there are example R-code blocks which can also be found in 
the associated file. You will find such a directory, called EG, in the 
Dropbox/National_abalone_MSE/aMSE_files/scenarios directory. You could copy that to the 
location of your choice. In it you will also see a file called run_aMSE.R, which contains the 
code as described across the code blocks below. Once the user has edited the directory 
names, they could use that to run the MSE when the time comes. This file can be kept 
anywhere convenient (I tend to keep it in the ‘runs’ or prefixdir sub-directory and modify 
which subdirectory it points to for different scenarios. 

2. Generate a draft control file for a scenario using the aMSE function ctrlfiletemplate() 
(the default control file name is controlEG.csv). As it stands this sets up a system of 8 
SAU with 56 populations distributed among them (as in the Tasmanian western 
fishery MSE). In the EG subdirectory (rundir) this is called controlEG.csv (= Base 
Case of natural mortality = 0.15, steepness = 0.7, lambda = 0.75, with 8 sau with a 
total of 56 populations). 

3. If necessary, edit the .csv file created by ctrlfileTemplate() to match the conditioning 
data available for the fishery being simulation tested (here we will leave it as-is but 
further details of each component in the control file are given in the The Input Files 
and Conditioning the MSE chapters). 

4. Generate a draft data file for the number of stock assessment areas (termed sau in the R 
code) to be simulated using the aMSE function datafileTemplate(), being sure that the 
data file name matches that pointed to in the control file (see the code blocks below, 
but the default data file name is saudataEG.csv, as already described in the default 
control file). 

5. If necessary, edit the .csv file created by datafileTemplate() to match the conditioning 
data available for the fishery being simulation tested (here, again, we will leave it as-
is but, once again, further details are given in the The Input Files and 
Conditioning_the_MSE chapters). Descriptions of each entry in the control and data 
files are given in the The_Input_Files documentation. 

6. A second data file of size-composition data is required if the user wants to compare the 
predicted size-composition of catches against those observed during the operating 
model conditioning. Here, such a file is generated using one of the internal data-sets 
to produce a file called lf_WZ90-20.csv, implying length frequency data from the 
western zone for years 1990 to 2020, with some missing years (again this file can be 
found in EG in the Dropox/National_abalone_MSE/aMSE_files/scenarios directory), 
but the code used to generate it is given below. 

7. Each jurisdiction in Australia currently has very different harvest strategies with very 
different requirements. To allow for these differences a list of HS related properties is 
input to the software so that each HS can operate appropriately. This list was named 
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hsargs (obviously short for harvest strategy arguments). Each harvest strategy needs 
to have detailed documentation regarding what arguments are required. An example 
for Tasmania is given in the code blocks below. See also the Appendix in this 
aMSEGuide (Haddon, 2024a). 

8. From this point there is a choice of running either the do_condition() or the do_MSE() 
functions. The first reads in the control and two data files, generates the equilibrium, 
unfished simulated zone and then conditions the operating model on any available 
fishery data (catches, indices of abundance, size-composition data). It then tabulates 
and plots up the conditioned result to enable the success of conditioning on a real 
fishery to be determined This is used when adjusting the conditioning of the model to 
a fishery. The do_MSE() function does all that the do_condition() function does, but 
then also conducts the projections under control of the harvest strategy whose 
definition is contained in the EGHS R package (of whichever harvest strategy is 
being used). Before running do_MSE() for the first time for a new fishery it is best to 
run do_condition() repeatedly so that the conditioning can be adjusted prior to making 
more formal MSE scenario runs for later comparisons. Here we could forego that step 
as the template files reflect a pre-conditioned base-case scenario for the western zone 
blacklip fishery in Tasmania. 

9. Finally, one uses the makeoutput() function, which plots and tabulates the results, and 
produces the HTML and CSS files, into the defined rundir and has the option of 
opening the internal web-page ready for inspection. The R objects output by 
do_MSE() can be very large (~1.8Gb for 250 replicates if the includeNAS (include 
numbers-at-size) argument is set = TRUE) so it is best to save that to a fast hard drive 
which is not synced to a cloud somewhere (ie NOT DropBox, and absolutely not to a 
shared DropBox folder, or at least not one shared with me). However, a run of 250 
replicates using the Tasmanian HS currently takes about 2.9 minutes (on an Asus 
Zenbook S with an Ultra 7 processor) so repeating scenarios is not overly onerous. 
Keep in mind that comparisons are done with saved results. 

As will be seen in the code chunks below, this whole process sounds more complex than it is 
in practice. 

3.3 The Workflow in Practice 

3.3.1 The Setup 

As usual, if a user is unfamiliar with a function then use ?function-name to get help on what 
it does and what its arguments are. Alternatively, just type function-name in the console (with 
no following brackets) and the function’s code will be printed to the console for inspection or 
try args(function_name) for just a listing of the arguments. 

Diagrammatically, the process of running the aMSE software can be summarized as in 
Figure 3.2, although a verbal description and example R code are also given below. 
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Figure 3.2: Diagram of the sequence of actions or steps required to run the aMSE software for a given scenario. 

 

First one sets up R options (if desired), calls the required libraries, and sets up the directory 
information: 

options("show.signif.stars"=FALSE, # some R options I find helpful 
        "stringsAsFactors"=FALSE,  # now a default in R4 
        "max.print"=50000, 
        "width"=240) 
suppressPackageStartupMessages({  # declare libraries ‐‐‐‐‐‐‐‐‐‐‐‐‐ 
  # this is the minimum, of course others can be added if desired 
  library(aMSE) 
  library(EGHS)     # obviously only if using the Tasmanian HS 
  library(codeutils)  
  library(hplot) 
  library(makehtml) 
  library(knitr) 
})  
# OBVIOUSLY, modify the rundir definition to suit your own setup!!! 
prefixdir <‐ pathtopath(getDBdir(),"A_codeR/aMSEGuide/runs/") 
postfixdir <‐ "EG"     # a descriptive name for the rundir  
rundir <‐ pathtopath(prefixdir,postfixdir) # define rundir 
startime <‐ Sys.time() # to document the time taken 
verbose <‐ TRUE        # send messages to the console about the run progress 
controlfile <‐ paste0("control",postfixdir,".csv") # match control file name 
outdir <‐ "C:/aMSE_scenarios/EG/"   # storage on a non‐cloud hard‐drive 
confirmdir(rundir,ask=FALSE)   # make rundir if it does not exist 

c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EG  already exists   

confirmdir(outdir,ask=FALSE)   # to be interactive needs ask = TRUE 

C:/aMSE_scenarios/EG/  already exists   

 

3.3.2 Making the control and data files 

Now we can generate the control and the two data file using aMSE template functions. If 
these files already exist then, obviously, we do not need to run this code again. 
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controlfile <‐ "controlEG.csv" # default example file name, change it as needed 
# Now make the controlfile. Read the help file using ?ctrlfiletemplate. This 
# explains what the devrec argument is all about. 
ctrlfiletemplate(indir=rundir,filename=controlfile,devrec=0) 
# Within controlfile, the default data file name is 'saudatapostfixdir.csv'. If 
# you want to call it something else (maybe aloysius.csv or machynlleth.csv?) 
# then edit the seventh line of the controlfile that holds the definition 
# of the name of the SAU data file, and change it in this code. 
datafiletemplate(indir=rundir,filename="saudataEG.csv") 
# The program also needs some length composition data. For this we are going  
# to use one of the inbuilt data‐sets called 'lfs' (see its help). The default 
# filen is already written into the controlfile. Change that as necessary. 
data(lfs) 
writecompdata(indir=rundir,lfs,filen="lf_WZ90‐20.csv") 
# dir(rundir)  # listing the contents of rundir can be a useful check 

I recommend that you take a look at the contents of these newly generated files (either in 
RStudio or Excel, though Excel is best avoided), which will be found in EG, but, for now, do 
not alter anything, although if you do (perhaps the data file name) be sure to re-save it as a 
.CSV file and not an .XLSX file. Full details of these files are given in the The Input Files 
section of the documentation. For now, the user should know that the scenario includes a 
natural mortality = 0.15, a recruitment steepness = 0.7, and a cpue hyper-stability lambda = 
0.75. The latter implies that the dynamics are affected by hyper-stable CPUE rather than the 
more classical assumption of a linear relationship between CPUE and exploitable biomass 
(the assumption of linearity may be common and classical, but it is incorrect for abalone and 
lots of other species). 

3.3.3 The HS Package or JurisdictionHS.R File 

Here we are using the EGHS R package, and the default hsargs (see code chunk below). If 
an R package has been developed that implements a harvest strategy for a specific 
jurisdiction, it will need its own set of hsargs. The functions that are used to define the 
harvest strategy being tested can be read in via a source R file, or if an R package exists, the 
relevant library(s) loaded. 

# In Tasmania, the HS is included in a package called EGHS, and this  
# contains all the required functions.  
# Alternatively use source(“pathtoafilecontainingtheHSfunctions.R”) 
# But, if the EGHS package is used instead of a source file, we still need 
# the global object hsargs, which contains the settings used by the the  
# Tasmanian HS. For details of hsargs, see the documentation for ?EGHS or 
# for whichever HS you are exploring. 
 
hsargs <‐ list(mult=0.1, #expansion factor for cpue range when calc the targqnt 
               wid = 4, # number of years in the grad4 PM 
               targqnt = 0.55, # quantile defining the cpue target 
               maxtarg = c(150,150,150,150,150,150,150,150), # max cpue Target 
               pmwts = c(0.65,0.25,0.1),  # relative weights of PMs 
               hcr = c(0.25,0.75,0.8,0.85,0.9,1,1.05,1.1,1.15,1.2), # hcr mults 
               hcrm3 = c(0.25,0.75,0.8,0.85,0.9,1,1.1,1.2,1.25,1.3),# mr 3 
               startCE = 2000, # used in constant reference period HS 
               endCE = 2019,   # used in constant reference period HS 
               metRunder = 0,  # should the metarules be used. 0 = No 
               metRover = 0,   # use metarules 0 = No 
               decrement=1, # use fishery data up to the end of the time series 
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               pmwtSwitch = 0, # n years after reaching the targCE to replace 
               stablewts = c(0.8, 0.15, 0.05), # pmwts with stablewts mr3 
               hcrname="constantrefhcr",     # the name of the HCR used 
               printmat=NULL) # something needed for some HS, not TAS 

If using a jurisdictionHS.R source file, then it needs to contain a number of specific functions 
and constants, even where some may, in fact, do nothing: 

tasFIS <‐ function(x) { # currently no FIS data is used in TAS 
  return(NULL)          # though this may change 
} 

For full details see the JurisdictionHS_Requirements section. 

3.4 Running do_Conditioning 

Once setup with all the required files and packages, one would normally attempt to condition 
the model by changing input parameters so that it generates simulated dynamics that more 
closely follow those observed in the real fishery. For example, it is possible to modify 
recruitment deviates in particular years, which would modify the available exploitable 
biomass in later years, which, in turn, will change the predicted CPUE and associated size-
composition of catches, with the intention of improving the match between the observed and 
that predicted by the operating model. However, if, when running the ctrlfiletemplate 
function, you used the devrec=0 argument (as we did), then the recruitment deviates for the 
western zone, under a scenario of natural mortality M = 0.15, recruitment steepness = 0.75, 
and a hyperstability parameter lambda = 0.75, have already been optimized using the 
sizemod size-based modelling package to provide the best statistical fit between the observed 
and predicted CPUE and the observed size-composition of the catch and that predicted by the 
model (see Using_sizemod_to_condition_the_SAU). 

Despite having the operating model already conditioned, here we will run the code needed to 
condition the model on the historical data to illustrate what the outputs will look like. The 
code in the next block automatically generates a set of web-pages using HTML and CSS to 
layout and display the results. If you run this code while having Windows Explorer (or 
whatever equivalent you are using on your machine) open on your rundir you should see the 
generation of an array of files prior to the web-pages being opened automatically in a 
browser. If you were to set the argument openfile = FALSE then the browser would not be 
activated, but you could open it all by double clicking on the EG.html file within the EG 
directory. Alternatively, one can enter, into the RStudio console, 
browseURL(pathtopath(rundir,“EG.html”)). 

prodout <‐ FALSE  # no estimation of production properties saves time but 
# this runs the MSE on a control rule that uses no meta‐rules. It will be 
# compared with scenarios that include meta‐rules in a later example. 
out <‐ do_condition(rundir,controlfile,  # controlfile defined above 
                    calcpopC=calcexpectpopC,  # from EGHS 
                    verbose = TRUE, 
                    doproduct = prodout, # prodout=FALSE, no details re MSY 
                    dohistoric=TRUE, 
                    matureL = c(70, 200), # length range for maturity plots 
                    wtatL = c(80, 200), # lengths for weight‐at‐length plots 
                    mincount=120,  # minimum obs for including length comps 
                    uplimH=0.35,   # not used because doproduct=FALSE 
                    incH=0.005, 
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                    deleteyrs=0,  # all length comp years used 
                    prodpops=NULL) # no individual pop producivity plotted 

All required files appear to be present  
Files read, now making zone  
Time difference of 0.7189279 secs 

Conditioning on the Fishery data   

makeoutput(out,rundir,postfixdir,controlfile,hsfile="EGHS Package", 
           doproject=prodout,openfile=TRUE,verbose=FALSE) 

The local web page displaying the output has a number of tabs. The condition tab illustrates 
the match between the observed cpue and that predicted by the operating model, while the 
predictedcatchN tab illustrates the match between the observed size-composition of the 
catches and the predicted values. It is clear that those sau with small sample sizes of size-
composition data only have a relatively poor model fits in some years. 

Each of these tabs are repeated when running the do_MSE() function so more detailed 
descriptions of each tab will be given in the next section where the MSE will be run using the 
default Tasmanian harvest strategy. Note that the main page is named ‘EG’, which reflects 
the fact that the scenario webpage top-lvel tab is named after the postfixdir. 

3.5 Running do_MSE 

Once conditioning the model has been completed to the degree desired, one can run 
projections for a specific management scenario with the simulated abalone zone’s 
management being determined by the harvest strategy as implemented in EGHS (see the 
discussion concerning the spectrum of options relating to conditioning operating models and 
how that related to the specific objectives of the simulation testing being undertaken). 

If one keeps an Explorer window open looking at rundir, the addition of different files can be 
watched in real time. The MSE can be run using the following code (I suggest you examine 
the help files for any functions new to you). do_MSE() provides notifications to the console 
about the progress of calculations if ‘verbose=TRUE’ is set. The checkhsargs() function is 
defined to examine hsargs but is only valid for the TAS EHS. Any other jurisdiction would 
need to write an equivalent function to interact with their own HS and hsargs requirements. 

checkhsargs(hsargs)  # lists chosen options before run, only for TAS 

The hcr being used is:  constantrefhcr  
hsargs$startCE and hsargs$endCE are used to define the reference periods 
for each sau  
  

# ?do_MSE provides more detailed descriptions of each function argument 
# see EGHS package for help with the HS functions 
# do_MSE function can take a few minutes to run so be patient 
out <‐ do_MSE(rundir,controlfile, # already known 
              hsargs=hsargs,    # defined as global object 
              hcrfun=constantrefhcr,   # the main HS function 
              sampleCE=tasCPUE, # processes cpue data 
              sampleFIS=tasFIS, # processes FIS data (if any) 
              sampleNaS=tasNaS, # processes Numbers‐at‐Size data 
              getdata=tasdata,  # extracts the data from the zoneDP object 



30 
 

              calcpopC=calcexpectpopC, #distributes catches to populations 
              makeouthcr=makeouthcr, # generates updateable HS output object 
              fleetdyn=NULL,   # only used in SA and VIC so far 
              scoreplot=plotfinalscores, # a function to plot HS scores 
              plotmultflags=plotmultandflags, # function to plot multipliers 
              interimout="", # save the results after projecting, 
              varyrs=7, # years prior to projections for random recdevs 
              startyr=48, # in plots of projections what year to start 
              verbose=TRUE, # send progress reports to the console 
              ndiagprojs=4, # individual trajectories in DiagProj plots 
              cutcatchN = 56,  # cut size‐at‐catch array < class = 112mm 
              matureL = c(70, 200), # length range for maturity plots 
              wtatL = c(50, 200),   # length range for weight‐at‐length plots 
              mincount = 120,   # minimum sample size in size‐composition data 
              includeNAS = FALSE, #include the numbers‐at‐size in saved output? 
              depensate=0, #will depensation occur? see do_MSE help for details 
              kobeRP=c(0.4,0.2,0.15), # ref points for a kobe‐like phase plot 
              nasInterval=5,  # year interval to use when plotting pred NaS  
              minsizecomp=c(100,135), #min size for pred sizes, min for catches 
              uplimH=0.35,incH=0.005, #H range when estimating productivity  
              deleteyrs=0)    # all length comp years used  

All required files appear to be present  
Files read, now making zone  
Now estimating population productivity between H  0.005  and  0.35  
makeequilzone  25.24291 secs  

Conditioning on the Fishery data   
dohistoricC  1.205479 secs  

Conditioning plots completed  1.575177 secs  

Preparing for the projections  
Projection preparation completed  10.94988 secs  
Doing projections  
2021  2022  2023  2024  2025  2026  2027  2028  2029  2030  2031  2032  
2033  2034  2035  2036  2037  2038  2039  2040  2041  2042  2043  2044  
2045  2046  2047  2048  2049  2050   
All projections finished  1.51891 mins  
Now generating final plots and tables  
Starting the sau related plots  

Finished all sau plots  14.65523 secs  
Starting size‐composition plots  

Finished size‐composition plots 6.194708 secs  

Plotting fishery information  

hsargs.txt saved to rundir  
plotting HS performance statistics  

plotting Population level dynamics  

All plots and tables completed  16.06431 secs  
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You could check out the list of files in rundir using dir(rundir). If the numbers-at-size are 
saved (includeNAS=TRUE) the out object can be gigabytes rather than megabytes. Best to 
only use this option when making a final scenario run. 

The do_MSE() function currently requires 29 input parmeters.The rundir and controlfile were 
defined earlier, the remaining 27 arguments are new and are described in the help page for 
do_MSE() (?do_MSE). 

A flag can be set (verbose) to determine whether to have updates on progress sent to the 
console as they were above. This can be helpful, especially during development. While you 
should examine the help for do_MSE() some of the more important arguments will be 
considered here. The function makes great use of R’s ability to use function names as 
arguments to other functions. In that way, while we have standard names for functions within 
do_MSE() one can point each of those to custom functions devised for each jurisdiction’s 
approach to managing its abalone stocks. Just as each jurisdiction will require hsargs to have 
a different set of components, the arguments listed here all require functions to be written for 
each jurisdiction to match the requirements of each HS. 

• hcrfun=constantrefhcr, is the main function driving the HS. It gathers all the inputs and is 
expected to output everything wanted from the HS. In the case of Tasmania, the minimum 
would be the acatch for each SAU. In fact, many more outputs are output and stored (in 
outhcr) so that the HS performance can be plotted and monitored. 

• sampleCE=tasCPUE, controls how the CPUE data from the simulations are smapled and 
processed prior to use within the HS (see the R code by typing tasCPUE into the console with 
no following brackets). 

• sampleFIS=tasFIS, similarly this function would process any FIS data is any were available. 

• sampleNaS=tasNaS, processes the Numbers-at-Size data from the populations to generate 
the predicted number-at-size in the catch. 

• getdata=tasdata, extracts the data from the zoneDP object, which is used to hold the 
dynamics of the dynamic zone during projections. 

• calcpopC=calcexpectpopC, once the acatch (or TACC) is known then this function is used 
to distribute that catch across the populations within each SAU (needed even where 
management does not use SAU scale catch allocation. 

• makeouthcr=makeouthcr, this is used in the function doprojections where it is input into 
hcrfun (here that is constantrefhcr), which outputs an updated version. A the end of the 
projections it will therefore contain all the outputs from hcrfun ready for characterization. 

• fleetdyn=NULL, where the default fleet dynamics is not used (which predicts the catch 
from each SAU based on available exploitable biomass plus noise) this is where a custom 
function can be input (this is needed in South Australia) 

• scoreplot=plotfinalscores, a jurisdiction specific function to plot HS scores 

• plotmultflags=plotmultandflags, a function to plot eh catch multipliers as implemented in 
each jurisdiction. 
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When you run this do_MSE() code, in fact it will be doing rather a lot of work, even though 
in this instance it is only running 100 replicates (more normally do 250 or 500). Apart from 
the results contained in the multiple .png files (plots), .csv files (tables), and some other .csv 
files, all the results can be found in the out object associated with the do_MSE() statement. 

str1(out)  # function from codeutils = str(out,max.levels=1) 

List of 29 
 $ tottime     : 'difftime' num 2.572 
 $ runtime     : POSIXct[1:1], format: "2025‐04‐17 16:26:03" 
 $ starttime   : POSIXct[1:1], format: "2025‐04‐17 16:23:29" 
 $ glb         :List of 20 
 $ ctrl        :List of 13 
 $ zoneCP      :List of 56 
 $ zoneD       :List of 14 
 $ zoneDD      :List of 14 
 $ zoneDP      :List of 14 
 $ NAS         : NULL 
 $ projC       :List of 5 
 $ condC       :List of 15 
 $ sauout      :List of 10 
 $ outzone     :List of 13 
 $ production  : num [1:71, 1:6, 1:56] 256 245 235 225 216 ... 
 $ condout     :List of 2 
 $ HSstats     :List of 2 
 $ saudat      : num [1:32, 1:8] 21.5 0.3 130 1 54.3 ... 
 $ constants   : num [1:33, 1:56] 6 21.5 0.3 130 1 ... 
 $ hsargs      :List of 16 
 $ sauprod     :List of 3 
 $ zonesummary :List of 2 
 $ kobedata    : num [1:8, 1:4] 0.33 0.449 0.259 0.242 0.313 ... 
 $ outhcr      :List of 8 
 $ scoremed    : num [1:30, 1:7] 42.8 35.4 31.5 31.3 33.4 ... 
 $ popmedcatch :List of 8 
 $ popmedcpue  :List of 8 
 $ popmeddepleB:List of 8 
 $ pops        : num [1:56, 1:26] 1 2 3 4 5 6 7 8 9 10 ... 

Many of these objects are lists and so one might use str() or str2() to examine their 
structure and contents, but this has been done for you in the R_Object_Structure_of_Output 
section of the documentation (though you could/should still try it yourself). The many plots 
and tables produced remain only a start. Any number of further plots and tables can be 
produced from what is already there but especially when alternative scenarios are compared. 
So, knowing the object structure of what comes out is extremely helpful. 

Most of the analyses we can see are conducted at the primary grouping level (i.e. the sau 
level for EGHS). Thus, the main objects for initial study would be the sauout, NAS, outzone, 
and even the zoneDP objects (population level dynamics). See the 
R_Object_Structure_of_Output section for more details. 

You should run the dir(rundir) to see how many files have been created by the MSE ready 
for use. 
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We can now construct the internal web-page to display results. If you set the argument 
‘openfile=TRUE’ then the internal website will open automatically. If set to FALSE then you 
would need to open the rundir and double-click the scenario html file. For example, if your 
scenario is called EG then you would click on EG.html, alternatively, one can enter, into the 
RStudio console, browseURL(paste0(rundir,“.html”)), which will automatically use the latest 
analysis conducted into rundir. 

makeoutput(out,rundir,postfixdir,controlfile, 
           hsfile="EGHS Package",openfile=TRUE,verbose=FALSE) 

Obviously, this is a multi-faceted summary of what has been done. It includes the pages from 
do_condition plus many more. 

3.5.1 Save Outputs for later Comparison 

The primary intent of the aMSE software is to make comparisons between alternative harvest 
strategy scenarios. For this it is necessary to save the out objects (which, without the NAS 
object are hundreds of mega-bytes and with the NAS object can be giga-bytes). Because of 
their size it is best to store these on a local and fast hard drive so that when making 
comparisons the separate out object for each scenario can be examined and the outcomes 
compared. Here we illustrate the required R code and we will use the results later in the 
documentation when comparing the basecase with alternatives. 

save(out,file=pathtopath(outdir,paste0(postfixdir,".RData"))) 

3.5.2 Home Page 

The Home tab contains lines of information concerning the particular scenario run of the 
MSE. This information includes the directories used, the files used, some details of the run 
(number of replicates, years projected, number of populations and sau) but especially the 
randomseed used when generating the different populations within the sau. If that 
randomseed, which is set in the controlfile, is altered one would expect the complete 
conditioning to be different as many of the properties of each population would change 
slightly. What this number does is ensure that the same simulated zone is generated each time 
a scenario is run. 
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Figure 3.3: The home page of the internal web-site generated from the results of the do_MSE R function from aMSE. Of 
course, your own will differ from this in the details but all the tabs should be there. 

In the following pages are a wide variety of results and outputs but, of course, any number of 
extra, additional, or alternative plots and tables could be included on each page (although that 
would entail updating the do_MSE() function, or functions it refers to). Each figure and table 
caption contains the name of the .png or csv file from which it is produced should the figure 
or table be needed for any other purpose. Clicking on any figure will enlarge it for ease of 
examination (use the return arrow at top left in the browser to return to the original page). In 
the sections below describing each tab a figure is given illustrating at least one plot from each 
tab. See the respective tab for the related caption. 

 

Figure 3.4: A view of a browser page where a particular figure has been enlarged by clicking on it (here most of it is 
obscured to the right). Use the highlighted arrow to return to the ordinary scale view. 
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3.5.3 Biology Page 

This contains plots of the maturity-at-length curves, weight-at-size curves, and emergence-at-
size curves for each population in each SAU. For each metric, there is a pane of plots for each 
SAU, each of which contains indicators for every population in that SAU 

The final eight histograms of biological properties illustrate the variation among population’s 
for their values of natural mortality, M, the MaxDL, L95 and L50 growth parameters across 
all SAU and populations. There are also histograms of each population’s MSY, steepness, 
and the biological LML (size-at-maturity plus two years’ growth. Finally, AvRec, the 
unfished recruitment, are also variable, but this reflects the fact that in each sau only a 
proportion of the total sau AvRec is allocated to each population. There is almost no random 
variation in the AvRec values between R runs as the standard deviation is set to 1e-05 in each 
case (because the AvRec value is fitted within sizemod. 

 

Figure 3.5: The distribution of various biological properties across the 56 populations. 

  

3.5.4 Tables Page 

Currently, this holds only two tables, the first being the productivity properties of each sau 
(B0, MSY, etc), and the second being the tabulated contents of zonebiology.csv. This 
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represents the various actual values for an array of biologically important variables (including 
those plotted as histograms on the Biology page), all by population. The input constants for 
population biological properties are derived from adding random variation to the SAU scale 
property values. 

 

Table 3.1: SAU properties relating to recruitment and productivity. 

 sau6 sau7 sau8 sau9 sau10 sau11 sau12 sau13 

R0 258881 461928 239640 1058383 836448 1720648 1546067 583240 

B0 438.882 872.171 524.479 2438.878 2071.964 4152.789 3126.261 915.911 

ExB0 414.822 845.227 522.023 2450.284 2117.053 4164.472 3203.565 869.511 

MSY 20.283 43.738 24.955 122.512 102.811 207.707 156.662 41.758 

steep 0.691 0.705 0.7 0.698 0.707 0.702 0.705 0.695 
 

 

3.5.5 Recruits Page 

This holds two plots. The first is a representation of the stock recruitment relationship for 
each sau, all on one plot. This illustrates how different each sau is in terms of productivity. 
The second plot includes a plot of the stock-recruitment relationships of each population 
within each sau, which illustrates the variation apparent in the defined populations. Each plot 
has its own y-axis scale, so care is needed with interpretation. 

 

Figure 3.6: Total stock-recruitment curves for the eight SAU in the example. 

 

3.5.6 popprops Page 

Tabulates some of the properties of the individual populations within each sau. Currently this 
reflects only the proportion of the average recruitment by sau allocated to each population, 
which repeats what is found in the saudataEG.csv file. 
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3.5.7 Production Page 

As the name suggests, this tab provides figures and tables realting to productivity. It has a 
plot of the production curve relative to expected CPUE for each sau, including estimates of 
the MSY and the predicted CPUE at MSY. The second plot is of the productivity curves for 
the whole zone. This more complex plot could be generated for each sau as desired using the 
production array (try str1(out$production)). 

Finally, there is a small 5 x number-of-sau matrix of 𝐵0, 𝐵ெௌ, 𝑀𝑆𝑌, 𝐷ெௌ (depletion at 
MSY), and 𝐶𝐸ெௌ (predicted cpue at 𝐵ெௌ) for each sau. This has extra information to the 
first table in the Tables page. 

 

Figure 3.7: Total stock-recruitment curves for the Zone in the example. 

 

3.5.8 NumSize Page 

This remains in need of further development. It includes a single plot containing the expected 
equilibrium, unfished numbers-at-size for the whole zone, and a second plot illustrating the 
numbers-at-size for each population. With 56 populations individual population details 
cannot be discerned, but it still illustrates the variation in growth, modal progression and 
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productivity among populations). Following the messy all population plot is a separate plot 
for each SAU, with snapshots of the size distribution of the stock in 5-year steps across the 
projection period. Following these is a similar set of 5-year snapshots of the size-distribution 
of each replicate’s catch for each SAU. 

 

Figure 3.8: Predicted size-composition of the catch in sau12 from 2020 - 2050 in 5 yearly steps. 

 

3.5.9 poptable Page 

This contains the basic biological properties for each of the 56 populations in the example. 
This is obviously a large table, which is also saved as popprops.csv inside the out object. 
These values are based on the values provided as input in saudata.csv, with added variation 
within the range specified. 

 

3.5.10 zoneDD Page 

As with any web page on Windows, pressing ‘ctrl +’ increases the size of the contents and 
‘ctrl -’ decreases the size. With the figures, each can clicked and they enlarge automatically, 
at top left is the back arrow that will return one to the broader view (Figure 3.4). Selecting the 
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zoneDD tab leads to a page with a figure made up of histograms of some of the major derived 
properties of the 56 populations (as in the Biology tab) and then four large tables. 

 

 

Figure 3.9: Histograms of eight of the major biological parameters and properties across all 56 populations within the zone. 

 

The top table on this tab shows the contents of the propertyDD.csv file now found in rundir, 
some of which is plotted in Figure 3.9. These are the conditioned emergent properties of each 
population in the zone. The second is a table of the last ten years of harvest rates during the 
conditioning for each population from the final_harvestR.csv file. Very high values in any 
SAU or population indicate a potentially poor fit. In this case there are some values in the first 
three populations (sau6) above 0.4 in years V2, V4 and V5, but sau6 to sau8 are difficult sau 
to fit a model to. The third is the table of saudat.csv, which contains the data read in from the 
saudataEG.csv file for reference. Finally, the fourth table, popdefs.csv, contains the specific 
parameter values produced for various properties of each population. 
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3.5.11 condition Page 

With the 8 SAU in the Tasmanian conditioning, this tab contains 12 plots and two tables. The 
first plot compares the observed CPUE for each SAU, from the historical time series input in 
the control file, with those predicted by the operating model after biological conditioning and 
fitting the data using the R package sizemod. If you click on the plot in the web-page with 
your mouse, it will expand to become easier to read the details. Return to the main page using 
the left arrow (back) at the top of your browser (Figure 3.4). The match between the 
observed and predicted values, (Figure 3.10) appear very good, although sau8 is clearly a 
complex situation for any model to fit as since about 2012 the dynamics have been influenced 
by other factors not in the model. 

 

 

Figure 3.10: The top plot from the condition page of the internal web-page generated from the results of the do_condition 
and do_MSE R functions from aMSE. The values beside the SAU names are the simple sum-of-squared differences between 
the observed and predicted values. 

 

An example of the individual SAU plots is given for SAU 10. Below the comparison of CPUE 
plot there are 8 plots, one for each sau, illustrating the trajectory of the mature biomass 
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depletion level, the catch through time, the cpue (with the observed values in green), the 
implied annual harvest rate, the mature biomass (in tonnes), and the implied recruitment level 
(prior to 1982 and post 2014 are deterministically taken from the stock recruitment curve). 

 

Figure 3.11: The SAU plot illustrating the dynamics of the combined populations within SAU 10. This, and plots for all other 
SAU are to be found in the ‘condition’ tab. 

 

Below the plots for each sau is a summary plot of each recruitment trace used to simplify 
looking for correlated recruitment events predicted by the model. It is important to remember 
that the recruitment deviates produced by sizemod and reproduced in aMSE are estimates 
and not observed data. Nevertheless, it is possible to see repeating patterns of positive and 
negative recruitment levels between sau. For example, sau10 to sau13 all show a decline 
prior to 2010 followed by a rise, although the exact timing appears to differ by a year or so 
between some sau. sau6 and sau13 only have recruitment deviates from 1990 to 2014 
because they were only formed in 2000 when zonation was introduced, which limits the data 
available for conditioning. 

The final plot is a histogram of the depletion in the final year of conditioning. This illustrates 
the effectiveness of including recruitment variation when preparing for the projections (which 
was set in do_MSE() using the varyrs=7 argument). This figure is then complemented by a 
table of the quantiles of that final year’s depletion level. 
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3.5.12 predictedcatchN 

Illustrates the fit to the observed numbers-at-size in the catch obtained during the 
conditioning. The quality of fit is very much affected by the number of observations 
involved. These plots are for data at the sau scale, so they integrate across however many 
populations are deemed to make up the sau’s dynamics. Given this is the case, the fit in some 
cases is remarkably good, for example, in sau11 to sau13, the last plots on the page, the fits 
to the later samples where sample sizes are large are excellent. sau6 has the least data and 
generates the worst fit to size-composition data. 

 

Figure 3.12: Size-composition of the catch in sau12 with the model fitted size-distribution. black = observed, red = 
predicted. 

 

3.5.13 OrigComp Page 

Contains plots of the original size-composition of catch data. This is primarily for reference 
but also provides an image that allows for an appreciation of changes through time and of any 
gaps in the time-series. Understanding one’s data is vital when attempting to understand how 
the dynamics in a stock may be changing. 
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Figure 3.13: Size-composition of the catch in sau12 for samples taken 2001-2020. Number of observations at the top of each 
plot with year at the bottom. 

 

3.5.14 popgrowth Page 

Has plots of the individual growth curves expressed in each population within each sau. This 
enables a better appreciation of the variation in growth included within and between sau. 
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Figure 3.14: Implied size at age for the 12 ‘populations’ within SAU 12. The curves all appear similar in form but differ in 
the details. These growth curves will be identical across all scenarios, assuming the same random number seed is used. 

 

3.5.15 projSAU Page 

This page illustrates the effect of the harvest strategy on the dynamics of each sau. There are 
seven plots, the first being for the predicted CPUE by sau, then the predicted actual catch and 
aspirational catch (the first, not surprisingly, being more variable than the second because 
that is one source of variation added in the MSE), then comes the mature biomass followed 
by the exploitable biomass (very similar and currently reflective of the CPUE trends). 
Finally, comes the predicted recruitment trend and the last plot is of the predicted annual 
harvest rate. 

The grey lines represent the trajectory of individual runs, and illustrate the variation among 
replicates within each SAU. The each plot also has the median value of replicates (blue line) 
and the 90th quantile bounds (fine red lines). It is important to appreciate that these are 
derived values across all replicates, and do not represent an individual run. 
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Figure 3.15: Projected catches for the EG example for each SAU. The dashed line in each case is the estimated MSY. 

 

3.5.16 DiagProj Page 

Currently contains three plots designed to characterize some of the variability of the 
projections and to ensure that the expected dynamics are behaving in a manner akin to the 
real fishery. 

The first plot is of the differences between the actual SAU catches and the aspiration SAU 
catches, while useful this plot needs improvement to denote the proportional error in each 
SAU. Within the current Tasmanian HS when actual catches begin to approach 120 percent of 
the aspirational catch then that sau is closed to further commercial fishing. The 120% value 
has been reduced in recent years, meaning the withsigB value needs to be reduced. This acts 
to limit the variation now possible. This can be used to ‘tune’ the withsigB value that is used 
to control how precisely the fleet dynamics adheres to the aspirational catches derived from 
the harvest strategy. If withsigB was set extremely small, then the variation included in how 
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much catch was taken from each sau and each population would also be small. The 
calcpopC() function, which estimated the aspirational catches (and TAC) is defined in EGHS 
(or whichever harvest strategy is being used). The algorithm underlying the dynamics is 
described and explained in the documentation to EGHS (and hopefully in any other HS as 
well). The fleet dynamics essentially describes how the divers interact with the harvest 
strategy and hence needs to be part of the input functions as part of the HS package or R 
source file. 

The second plot is a comparison of a limited number of randomly selected trajectories from 
the scenario being explored showing the actual catches by SAU, as solid lines, and the related 
aspirational catches as dotted lines. This plot functions to show that the fleet dynamics model 
is behaving in a realistic manner but also to illustrate whether the expected variation in 
catches by sau are plausibly realistic. In fact, they are far less variable than during the history 
of the fishery (see the fishery tab) but this is a reflection of the meta-rules that control the 
deviation from the aspirational catches, that were only introduced in 2019. The number of 
lines plotted is determined by the ndiagprojs=4 argument within the do_MSE() functions 
argument list. With four lines, this is readable but if this is set too large the plot becomes too 
busy and loses any value for diagnostics, even when magnified. 

The third and final plot is of the same number of individual CPUE trajectories for each sau. 
Again, its purpose is to determine whether the variation in the predicted CPUE trends appear 
realistic for the fishery concerned. 
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Figure 3.16: Projected cpue for four randomly selected trajectories in each SAU to determine visually whether they appear 
realistic. 

 

3.5.17 zonescale Page 

Like the projSAU page, this contains seven plots of the same set of plots as seen in the 
projSAU page, but of zone scale dynamics. The projected values for each population within 
each SAU have all been combined at the zone scale (catch weighted where required, see the 
help for the function using ?poptozone). The plots include total catch, the TAC (essentially 
the same plots in Tasmania), CPUE, and mature biomass depletion level, mature biomass 
(mirrors the depletion plot), annual harvest rate, and annual recruitment. 

Of course, the zone scale dynamics obscure the variation observed at the SAU level and even 
more so at the population level. The zone scale ultimately, is of principal interest in terms of 
the consequences of a particular HS scenario for the TACC, while the SAU and population 
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scale details provide an understanding of the spatial complexity within the zone and the 
relative reliance on the different SAUs. 

The page ends with a table containing the median values of each of the plotted variables. 

 

Figure 3.17: Projected zonal catch for the EG example with the median and inner 90th quantiles. 

 

3.5.18 Fishery Page 

This page was intended to illustrate the historical fishery data. It currently contains a plot of 
the selectivity curves relating to all LML that occurred during the historical conditioning 
period and through the projection period. Then a plot of the individual catches by sau, which 
illustrates the remarkable inter-annual variation in historical catches in teh Tasmanian 
western zone blacklip fishery. Some sau exhibit halving and doubling of catches in the space 
of two years. Even the final zone-wide sub-plot exhibits some large changes between years, 
although this calmed down a good deal at least at the zone scale once quota zones were 
introduced in 2000. 

The final plot is of the cpue observed in each sau. Note the truncation of the time-series in 
sau6 and sau13, which occurs because the introduction of zonation in the year 2000 split 
these sau across different zones. 
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Figure 3.18: Historical catches for each western sau. Note the sometimes extreme variability between years, which can be 
highly destructive. 

 

3.5.19 HSperf Page 

This page currently holds a listing of the arguments used by the harvest strategy (hsargs) and 
plots of the cumulative sum of total catches by sau at 5-years and at 10-years as well as plots 
of the mean catches at 5 and 10 years, again by sau. The hsargs listing is simply a double 
check that the values used are what was wanted. 

The bi-modal outcome for sau12 is obvious and appears to relate to some random recruitment 
events leading to lower biomass and CPUE, and in some cases an aCatch reduction of 75% 
or even two such reductions. The final table is an example from a single replicate of what 
target cpue is achieved through the projections for each sau. It is the case that sau6 to sau10 
invariably breach the 150kg/hr imposed maximum, while sau11 - sau13 all achieve a 
somewhat lower target, with the more easterly sau having lower targets. 
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It is expected that these tables and plots will differ for each harvest strategy examined. 

 

Figure 3.19: Mean annual projected catch after 5 years in the EG example. SAU 12 has high yields and a bimodal outcome, 
leading to the zone outcome being bimodal. 

 

3.5.20 scores 

The scores page illustrates the HS statistics for each sau. Each plot depicts the projected 
catch and cpue, and the scores for the grad1, grad4, and targetCPUE performance measures 
(PM). Finally, it provides the targetCPUE and the final total score from the harvest control 
rule. 

These plots enable the user to determine which fishery PM contributed most influence on the 
catches and when. 

The red lines, in each case are the median values. 

Once again, the illustrated plots relate to the Tasmanian harvest strategy and its variants. 
Differing plots will be required to be relevant for different jurisdictions. Equally, the 
interpretation of any resulting patterns will be dependent on the jurisdiction’s HS. For 
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example, in Tasmania, the median final TasHS score is expected to stabilize at 6, which is the 
index of the multiplier = 1.0 in the hcr argument of Tasmania’s hsargs. 

 

Figure 3.20: Projected Tasmanian HS scores for the three CPUE performance measures, total score, and reference plots of 
catch and cpue for example EG for SAU 12. 

 

3.5.21 poplevelplots 

Each sau has a given number of ‘areas of persistent production’ or populations. This tab on 
the website contains plots of the replicate trajectories within each such population within 
each sau. The median value for each population is also plotted as a unique colour. Such 
population level plots illustrate the degree of heterogeneity in productivity between the 
populations within each sau. 
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Figure 3.21: Projected catches in each population within sau12 for example EG. 

 

3.5.22 phaseplot 

The phaseplot tab contains eponymous plots for each sau. For each sau there are two phase 
plots (or Kobe plots if you will). The first is a more classical plot of the predicted Harvest 
Rate vs the predicted Mature Biomass Depletion level and contains all the data from the start 
of the CPUE time-series to the end of the projection (the projected parts use the median, 
although this may evolve to show some possible bounds). The second plot is of the CPUE 
gradient-4 score from the EGHS vs the CPUE Target score from EGHS. The first is to act as 
a proxy for the fishing mortality or harvest rate, and the CPUE target score acts as a proxy for 
the mature biomass. The two plots for each sau are placed side by side to make comparisons 
between the theoretical optimum variables and their proxies (which do surprisingly well). 

A table is provided containing the final values (2050) for each SAU, of the metrics used in 
the phaseplots. 

 

Figure 3.22: Modelled phase plot and empirical proxy phase plot for sau12 in example EG. 
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4. Comparing MSE Scenarios 

4.1 Introduction 

In the previous chapter a description was given of how to run the aMSE software and 
produce an array of results. That has many interesting aspects but the underlying intent of the 
MSE software is to test and compare alternative harvest strategies. In general terms formal 
harvest strategies have three main components: 1) specified data sets, 2) a specified data 
analysis or assessment relative to limits and targets, and 3) a harvest control rule that 
produces a specified catch or fishing mortality. In addition to these three components, 
optionally, it is common, especially with empirical harvest strategies, to include meta-rules 
that are used to modify the harvest strategy’s behaviour under different circumstances. These 
metarules are designed to change the normal behaviour of the HS, should a particular 
threshold be reached, or set of conditions apply, such as number of consecutive years the 
CPUE above the target. 

Strictly, if a change is introduced into any of the details of the three main requirements of a 
harvest strategy, or the meta-rules if present, that would constitute a different harvest 
strategy. It is therefore very simple to devise multiple alternative harvest control rule or meta-
rule variants for comparison. The objective of making such comparisons is to determine 
which of the alternatives performs the best (best means it achieves the objectives of the HS 
most effectively). Sometimes, as often in politics, the choice is limited to the least-worst. 

Once again, before going into the details, it is useful to have a real-world example in mind to 
aid making sense of the theoretical descriptions. To that end, in this chapter, we will develop 
an example that makes a comparison between four versions of a Tasmanian HS (Haddon & 
Mundy, 2024b) in which a constant set of reference years are used. This will introduce the 
processes required to set up and then make comparisons between the results of different 
scenarios, which will, hopefully, give the user/reader a more intuitive grasp of how to use the 
suite of R packages that revolve around aMSE. The Tasmanian HS is under constant 
exploration for ways to make it more effective, however, an unvarying version has been 
produced for the examples in this guide: EGHS. This contains the constantrefhcr, which uses 
a fixed set of reference years (defined in hsargs) and the consthcr, a very simple HCR that 
uses a set of constant aspirational catches for each sau and that ignores any responses of the 
stock. This is effectively projection with a constant catch and strictly is more a risk 
assessment than a MSE. 

4.1.1 The Example 

The example will involve changing which meta-rules are included in the example Tasmanian 
HS found in EGHS, that is, we need to change components of hsargs. The user should read 
the documentation for the Tasmanian harvest strategy (at very least read the help page 
?EGHS::constantrefhcr and ?EGHS::EGHS, but also the latest Tasmanian abalone 
assessment and Bradshaw, 2018). The three input arguments, within hsargs, that are to be 
changed are the metRunder, metRover, and pmwtSwitch values. A description of each of the 
components within hsargs is provided in the help for the EGHS package. After calling 
library(EGHS) then one can type ?EGHS in the console and the packages help will be listed, 
including the components making up the hsargs. 

The Tasmanian HS currently uses three performance measures for each sau: 
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1) the targCPUE, which is the current standardized cpue relative to a target CPUE, 

2) the grad1, which is the gradient of change in cpue over the previous 12 months, relative 
to a target gradient of zero, 

3) the grad4, which is the gradient of change in cpue over the past four years, including 
year-to-date, relative to a target gradient of zero. 

 

The Tasmanian HS is based on Multi-Criteria Decision Analysis principles. A utility function 
is developed to assign a score from 0 to 10 for each PM, with a score of 5 for the Target 
value. 

There are currently 16 or 17 components in the input hsargs (depending on whether two are 
used to define a reference period or one vector; and this may change as other meta-rules are 
considered). The three arguments relating to the current three meta-rules can be turned off by 
setting them all = 0, or turned on by setting the first two to any number > 0, and the third is 
set to the number of years after the target CPUE has been achieved that CPUE needs to keep 
increasing before the alternative, more generous, HCR multipliers are used and the weights 
attributed to the different performance measures are altered to whatever vector is out into the 
stablewts argument. There will be four scenarios compared: 

 No meta-rules - named EG from the previous chapter (already saved) 
 only meta-rule 1 & 2 activated - named EGMR12 
 only meta-rule 3 activated - named EGMR3 
 all meta-rules 1 - 3 activated - named EGMRall 

4.2 Running the Three Extra Scenarios 

As in the previous chapter we will first start with a base-case that uses the current Tasmanian 
HS but it will have the first two meta-rules activated (if required, see the previous chapter for 
a description of these steps). 

options("show.signif.stars"=FALSE, # some R options that I find can help 
        "max.print"=50000, 
        "width"=240) 
suppressPackageStartupMessages({  # declare libraries ‐‐‐‐‐‐‐‐‐‐‐‐‐ 
  # this is the minimum, others can be added if desired 
  library(aMSE) 
  library(EGHS)     # obviously only if using the Tasmanian HS 
  library(codeutils)  
  library(hplot) 
  library(makehtml) 
  library(knitr) 
})  
dropdir <‐ getDBdir() 
prefixdir <‐ pathtopath(dropdir,"A_codeR/aMSEGuide/runs/") 
# we then use the _copyto()_ function to copy the required files from the  
# original example EG from the previous chapter. This is merely to facilitate  
# ensuring that the necessary files are put in the correct places.  
# _copyto()_ fixes the runlabel and datafile names but if changes are made to  
# internal fixed settings, such as to _lambda_ or _M_ then the copied files  
# will still require editing. In these examples we will only be altering the  
# hsargs metRunder, metRover, and pmwtSwitch values so no other changes are 
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# required. 
filelist=c("controlEG.csv","lf_WZ90‐20.csv","saudataEG.csv") 
aMSE::copyto(prefixdir=prefixdir,fromdir="EG",todir="EGMR12", 
             filelist=filelist) 

 
 
controlEG.csv  has been copied to  EGMR12  as  controlEGMR12.csv  
lf_WZ90‐20.csv  has been copied to  EGMR12  as  lf_WZ90‐20.csv  
saudataEG.csv  has been copied to  EGMR12  as  saudataEGMR12.csv  
Be sure to change the control, data, and run files where necessary  

[1] "c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EGMR12" 

 

Now we can define the rundir for the first scenario where no meta-rules are implemented. In 
all cases you would, obviously, define your own rundir by defining the prefixdir and 
postfixdir to suit your own computing environment. 

 

startime <‐ Sys.time()   # just to document the time taken 
#  OBVIOUSLY, modify the rundir definition to suit your own setup!!! 
postfixdir <‐ "EGMR12"  # a name for the rundir, in fact, same as base‐case 
rundir <‐ pathtopath(prefixdir,postfixdir)  # define the rundir 
verbose <‐ TRUE 
controlfile <‐ paste0("control",postfixdir,".csv") 
outdir <‐ "C:/aMSE_scenarios/EG/"   # for storing results 
# check all is well with the directories 
confirmdir(rundir,ask=FALSE)   # automatically make it if it does not exist 

c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EGMR12  already exists   

confirmdir(outdir,ask=FALSE)   # interactively ask default = TRUE 

C:/aMSE_scenarios/EG/  already exists   

 

One can see that the new rundir (EGMR12) now contains the three files required to run the 
MSE. It is a good idea to check the controlEGMR12.csv file where you should find the the 
runlabel and the datafile names have been changed appropriately by the copyto() function. As 
the change to be made is in the hsargs input then everything is ready to run the MSE, as 
before. Normally we conduct a run with at least 250 replicates, or perhaps 500, for this 
example, we will leave the number of replicates, as set in controlEG.csv, at 250, which is 
generaly sufficient to understand the implications of a given HS. Note also that we have set 
includeNAS=FALSE to keep the saved outputs relatively compact. 

#  set metUnder and metOver = 2, and pmwtSwitch = 0 
hsargs <‐ list(mult=0.1, wid = 4,  
               targqnt = 0.55, maxtarg = c(150,150,150,150,150,150,150,150),  
               pmwts = c(0.65,0.25,0.1),  # relative weights of PMs 
               hcr = c(0.25,0.75,0.8,0.85,0.9,1,1.05,1.1,1.15,1.2), 
               hcrm3 = c(0.25,0.75,0.8,0.85,0.9,1,1.1,1.2,1.25,1.3),  
               startCE = 2000, endCE = 2019,  
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               metRunder = 2, metRover = 2, # set = 2 means metarule 1 and 2   
               decrement=1, pmwtSwitch = 0, # set = 0 means no metarule 3  
               stablewts = c(0.8, 0.15, 0.05),  
               hcrname="constantrefhcr", printmat=NULL) 
checkhsargs(hsargs) 

The hcr being used is:  constantrefhcr  
meta‐rule 2 is being used  
meta‐rule 1 is being used  
hsargs$startCE and hsargs$endCE are used to define the reference periods 
for each sau  
  

out <‐ do_MSE(rundir,controlfile,hsargs=hsargs,hcrfun=constantrefhcr,   
              sampleCE=tasCPUE,sampleFIS=tasFIS,sampleNaS=tasNaS, 
              getdata=tasdata,calcpopC=calcexpectpopC,makeouthcr=makeouthcr, 
              fleetdyn=NULL,scoreplot=plotfinalscores, 
              plotmultflags=plotmultandflags,interimout="", 
              varyrs=7,startyr=38,verbose=TRUE,ndiagprojs=4,cutcatchN=56, 
              matureL=c(40,170),wtatL=c(50,200),mincount=120, 
              includeNAS = FALSE,depensate=0,kobeRP=c(0.4,0.2,0.15), 
              nasInterval=5,minsizecomp=c(100,135),uplimH=0.35,incH=0.005) 

All required files appear to be present  
Files read, now making zone  
Now estimating population productivity between H  0.005  and  0.35  
makeequilzone  25.2109 secs  

Conditioning on the Fishery data   
dohistoricC  1.144564 secs  

Conditioning plots completed  1.497504 secs  

Preparing for the projections  
Projection preparation completed  10.57106 secs  
Doing projections  
2021  2022  2023  2024  2025  2026  2027  2028  2029  2030  2031  2032  
2033  2034  2035  2036  2037  2038  2039  2040  2041  2042  2043  2044  
2045  2046  2047  2048  2049  2050   
All projections finished  1.468512 mins  
Now generating final plots and tables  
Starting the sau related plots  

Finished all sau plots  14.37874 secs  
Starting size‐composition plots  

Finished size‐composition plots 5.972448 secs  

Plotting fishery information  

hsargs.txt saved to rundir  
plotting HS performance statistics  

plotting Population level dynamics  

All plots and tables completed  15.46443 secs  
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makeoutput(out,rundir,postfixdir,controlfile,hsfile="EGHS Package", 
           doproject=TRUE,openfile=TRUE,verbose=FALSE) 
 
save(out,file=pathtopath(outdir,paste0(postfixdir,".RData"))) 

 

Now we need to repeat this a further two times using EGMR3 and EGMRall, which involves 
redefining the postfixdir, which in turn, redefines the rundir. Do not forget to change the 
meta-rule values, else you only repeat the previous analysis! Remember also, if you want the 
web-sites to open automatically after they have finished you need to set the openfile argument 
in makeoutput() = TRUE. 

# set metUnder and metOver = 0, and pmwtSwitch = 4, include hcr3 vector 
postfixdir <‐ "EGMR3"     # a new name for the rundir  
rundir <‐ filenametopath(prefixdir,postfixdir)  # define the rundir 
controlfile <‐ paste0("control",postfixdir,".csv") 
# check all is well with the directories 
confirmdir(rundir,ask=FALSE)   # automatically make it if it does not exist 

c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EGMR3  already exists   

filelist=c("controlEG.csv","lf_WZ90‐20.csv","saudataEG.csv") 
copyto(prefixdir=prefixdir,fromdir="EG",todir=postfixdir,filelist=filelist) 

 
 
controlEG.csv  has been copied to  EGMR3  as  controlEGMR3.csv  
lf_WZ90‐20.csv  has been copied to  EGMR3  as  lf_WZ90‐20.csv  
saudataEG.csv  has been copied to  EGMR3  as  saudataEGMR3.csv  
Be sure to change the control, data, and run files where necessary  

[1] "c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EGMR3" 

hsargs <‐ list(mult=0.1, wid = 4, # mult changed to = 0.05 
               targqnt = 0.55, maxtarg = c(150,150,150,150,150,150,150,150),  
               pmwts = c(0.65,0.25,0.1),  # relative weights of PMs 
               hcr = c(0.25,0.75,0.8,0.85,0.9,1,1.05,1.1,1.15,1.2),  
               hcrm3 = c(0.25,0.75,0.8,0.85,0.9,1,1.1,1.2,1.25,1.3),  
               startCE = 2000, endCE = 2019, metRunder = 0, metRover = 0,    
               decrement=1,  
               pmwtSwitch = 4, stablewts = c(0.8, 0.15, 0.05),  
               hcrname="constantrefhcr", printmat=NULL) 
checkhsargs(hsargs) 

The hcr being used is:  constantrefhcr  
meta‐rule 3 is being used  
hsargs$startCE and hsargs$endCE are used to define the reference periods 
for each sau  
  

out <‐ do_MSE(rundir,controlfile,hsargs=hsargs,hcrfun=constantrefhcr,   
              sampleCE=tasCPUE,sampleFIS=tasFIS,sampleNaS=tasNaS, 
              getdata=tasdata,calcpopC=calcexpectpopC,makeouthcr=makeouthcr, 
              fleetdyn=NULL,scoreplot=plotfinalscores, 
              plotmultflags=plotmultandflags,interimout="", 
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              varyrs=7,startyr=38,verbose=TRUE,ndiagprojs=4,cutcatchN=56, 
              matureL=c(40,170),wtatL=c(50,200),mincount=120, 
              includeNAS = FALSE,depensate=0,kobeRP=c(0.4,0.2,0.15), 
              nasInterval=5,minsizecomp=c(100,135),uplimH=0.35,incH=0.005) 

All required files appear to be present  
Files read, now making zone  
Now estimating population productivity between H  0.005  and  0.35  
makeequilzone  24.41401 secs  

Conditioning on the Fishery data   
dohistoricC  1.235547 secs  

Conditioning plots completed  1.58161 secs  

Preparing for the projections  
Projection preparation completed  10.40617 secs  
Doing projections  
2021  2022  2023  2024  2025  2026  2027  2028  2029  2030  2031  2032  
2033  2034  2035  2036  2037  2038  2039  2040  2041  2042  2043  2044  
2045  2046  2047  2048  2049  2050   
All projections finished  1.629163 mins  
Now generating final plots and tables  
Starting the sau related plots  

Finished all sau plots  15.87958 secs  
Starting size‐composition plots  

Finished size‐composition plots 6.616973 secs  

Plotting fishery information  

hsargs.txt saved to rundir  
plotting HS performance statistics  

plotting Population level dynamics  

All plots and tables completed  17.78126 secs  

makeoutput(out,rundir,postfixdir,controlfile,hsfile="EGHS Package", 
           doproject=TRUE,openfile=TRUE,verbose=FALSE) 
 
save(out,file=pathtopath(outdir,paste0(postfixdir,".RData"))) 

And now the final scenario EGMRall, including all three meta-rules: 

 

# set metUnder and metOver = 2, and pmwtSwitch = 4, include hcr3 vector 
postfixdir <‐ "EGMRall"     # a new name for the rundir  
rundir <‐ filenametopath(prefixdir,postfixdir)  # define the rundir 
controlfile <‐ paste0("control",postfixdir,".csv") 
# check all is well with the directories 
confirmdir(rundir,ask=FALSE)   # automatically make it if it does not exist 

c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EGMRall  already exists   
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filelist=c("controlEG.csv","lf_WZ90‐20.csv","saudataEG.csv") 
copyto(prefixdir=prefixdir,fromdir="EG",todir=postfixdir,filelist=filelist) 

 
 
controlEG.csv  has been copied to  EGMRall  as  controlEGMRall.csv  
lf_WZ90‐20.csv  has been copied to  EGMRall  as  lf_WZ90‐20.csv  
saudataEG.csv  has been copied to  EGMRall  as  saudataEGMRall.csv  
Be sure to change the control, data, and run files where necessary  

[1] "c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EGMRall" 

hsargs <‐ list(mult=0.1, wid = 4, # mult changed to = 0.15 
               targqnt = 0.55, maxtarg = c(150,150,150,150,150,150,150,150),  
               pmwts = c(0.65,0.25,0.1),  # relative weights of PMs 
               hcr = c(0.25,0.75,0.8,0.85,0.9,1,1.05,1.1,1.15,1.2),  
               hcrm3 = c(0.25,0.75,0.8,0.85,0.9,1,1.1,1.2,1.25,1.3), 
               startCE = 2000, endCE = 2019, metRunder = 2, metRover = 2,    
               decrement=1, pmwtSwitch = 4, stablewts = c(0.4, 0.5, 0.1),  
               hcrname="constantrefhcr", printmat=NULL) 
checkhsargs(hsargs) 

The hcr being used is:  constantrefhcr  
meta‐rule 2 is being used  
meta‐rule 1 is being used  
meta‐rule 3 is being used  
hsargs$startCE and hsargs$endCE are used to define the reference periods 
for each sau  
  

out <‐ do_MSE(rundir,controlfile,hsargs=hsargs,hcrfun=constantrefhcr,   
              sampleCE=tasCPUE,sampleFIS=tasFIS,sampleNaS=tasNaS, 
              getdata=tasdata,calcpopC=calcexpectpopC,makeouthcr=makeouthcr, 
              fleetdyn=NULL,scoreplot=plotfinalscores, 
              plotmultflags=plotmultandflags,interimout="", 
              varyrs=7,startyr=38,verbose=TRUE,ndiagprojs=4,cutcatchN=56, 
              matureL=c(40,170),wtatL=c(50,200),mincount=120, 
              includeNAS = FALSE,depensate=0,kobeRP=c(0.4,0.2,0.15), 
              nasInterval=5,minsizecomp=c(100,135),uplimH=0.35,incH=0.005) 

All required files appear to be present  
Files read, now making zone  
Now estimating population productivity between H  0.005  and  0.35  
makeequilzone  27.15966 secs  

Conditioning on the Fishery data   
dohistoricC  1.298785 secs  

Conditioning plots completed  1.652807 secs  

Preparing for the projections  
Projection preparation completed  11.93203 secs  
Doing projections  
2021  2022  2023  2024  2025  2026  2027  2028  2029  2030  2031  2032  
2033  2034  2035  2036  2037  2038  2039  2040  2041  2042  2043  2044  
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2045  2046  2047  2048  2049  2050   
All projections finished  1.682187 mins  
Now generating final plots and tables  
Starting the sau related plots  

Finished all sau plots  14.53013 secs  
Starting size‐composition plots  

Finished size‐composition plots 6.138116 secs  

Plotting fishery information  

hsargs.txt saved to rundir  
plotting HS performance statistics  

plotting Population level dynamics  

All plots and tables completed  16.17092 secs  

makeoutput(out,rundir,postfixdir,controlfile,hsfile="EGHS Package", 
           doproject=TRUE,openfile=TRUE,verbose=FALSE) 
 
save(out,file=pathtopath(outdir,paste0(postfixdir,".RData"))) 

 

Now, in your browser, there should be at least four webpages, each with the standard array of 
tabs. 

 

 

Figure 4.1: A view of a browser with four scenarios run and completed. 
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4.3 Making Comparisons 

While it would be possible to open the same tab in each of the three pages and step between 
them for a visual comparison that is not conducive to making useful comparisons. Instead, R 
functions have been generated that make a series of comparisons between the scenarios by 
first reading in the stored out objects from each MSE run. This involves knowing the outdir 
that was used and selecting those stored objects that contain the information about each 
scenario that the user wants to compare. So, assuming that a number of scenarios have 
already been run (as above), first we set up the required libraries and directories and then list 
the contents of outdir so an explicit selection can be made. If the user has setup a different 
way of storing their results then, obviously, a different way of selecting and reading the 
required scenarios will be required. 

4.3.1 Prepare the Analysis 
options("show.signif.stars"=FALSE,"stringsAsFactors"=FALSE, 
        "max.print"=50000,"width"=240) 
suppressPackageStartupMessages({ 
  library(aMSE) 
  library(EGHS) 
  library(codeutils) 
  library(hplot) 
  library(makehtml) 
  library(knitr) 
}) 
dropdir <‐ getDBdir() 
prefixdir <‐ pathtopath(dropdir,"A_codeR/aMSEGuide/runs/") 
 
postfixdir <‐ "EG_compare" 
verbose <‐ TRUE 
rundir <‐ pathtopath(prefixdir,postfixdir) 
outdir <‐ "C:/aMSE_scenarios/EG/" # obviously define one that suits you 
confirmdir(rundir,ask=FALSE) 

c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EG_compare  already exists   

confirmdir(outdir,ask=FALSE) 

C:/aMSE_scenarios/EG/  already exists   

files <‐ dir(outdir) 
printV(files) 

           value index 
1   BCtest.RData     1 
2       EG.RData     2 
3   EGMR12.RData     3 
4    EGMR3.RData     4 
5  EGMRall.RData     5 
6 MR4noLML.RData     6 
7  testMR4.RData     7 
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We will compare all four ‘EG’ scenarios, though that will make some of the plots relatively 
busy. 

4.3.2 Make the Comparisons 

Currently, in the vector called files there are six scenarios, there could be very many more so 
a method of selecting which files to use is needed. This is handled by the wrapper function 
do_comparison() using an argument pickfiles, which is merely a vector of the index of each 
file wanted in a comparison. In this case, pickfiles=c(1,2,3,4), if there had been two files 
listed before the three we are interested in it would have been pickfiles=c(3,4,5,6). To 
understand all the arguments to do_comparisons() see the function’s help. Running the 
following code will generate a new webpage with multiple tabs (see the help for 
?do_comparison). The output from the do_comparison() function is directed into an object, 
called here, result. The structure of the contents of result are listed in the appendix to this 
chapter. This is made available so that individuals can develop new plots and comparisons of 
their own. 

pfiles <‐ grep("EG",files) # or some other way of selecting, even manually. 
result <‐ do_comparison(rundir=rundir,postfixdir=postfixdir,outdir=outdir, 
                        files=files,pickfiles=pfiles,verbose=TRUE, 
                        intensity=100,zero=FALSE,Q90=TRUE, 
                        altscenes=NULL,juris="", 
                        ribbonleg="topleft",scencol=c(1,2,3,4)) 

Loading  EG.RData  which may take time, be patient   
Loading  EGMR12.RData  which may take time, be patient   
Loading  EGMR3.RData  which may take time, be patient   
Loading  EGMRall.RData  which may take time, be patient   
 
          Base_Case     EGMR12      EGMR3    EGMRall same 
reps         250.00     250.00     250.00     250.00    1 
randseed 3543304.00 3543304.00 3543304.00 3543304.00    1 
sigR           0.35       0.35       0.35       0.35    1 
sigB           0.10       0.10       0.10       0.10    1 
sigCE          0.10       0.10       0.10       0.10    1 
projyrs       30.00      30.00      30.00      30.00    1 
numpop        56.00      56.00      56.00      56.00    1 
nSAU           8.00       8.00       8.00       8.00    1 
Nclass       105.00     105.00     105.00     105.00    1 
hyrs          58.00      58.00      58.00      58.00    1 
pyrs          30.00      30.00      30.00      30.00    1 
larvdisp       0.01       0.01       0.01       0.01    1 
initdepl       1.00       1.00       1.00       1.00    1 
Now doing the comparisons   

Now doing the HSPM tab  

Now doing the C_vs_MSY tab   

Now doing the Scenario PMs   

Now doing the Zone tab   

Now doing the Catch tab   
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Now doing the cpue tab   

Now doing the depletion spawnB tab   

Now doing the depletion exploitB tab   

Now doing the harvestR tab   

Now doing the phaseplots tab   

 

 

Figure 4.2: A view of a browser page with the tabs currently produced by the do_comparison() function. 

 

4.3.3 The Different Tabs 

Hopefully, by now, it is not unexpected that the Home tab exhibits details relating to the run. 

The comparisons begin in the scenes tab, which currently only contains a single table 
detailing the underlying characteristics of each scenario. This table is a repeat of the table of 
scenario characteristics printed to the console. 

Given the challenge is to recover the stock in each SAU and that should allow the recovery of 
the fishery, a balance or trade-off is required between the rapidity with which catches are 
returned to the fishery and the rate at which stock biomass is predicted to recover. As the 
plots in the Dynamics tab demonstrate, returning catches too rapidly does not allow the 
biomass to increase as quickly, as evidenced by the predicted CPUE rising then falling 
rapidly. To approach a more stable and resilient fishery such oscillations are best avoided. 

Dynamics tab, where the median and 90th quantiles of the predicted projections for cpue, 
actual catch, mature biomass, and harvest rate for each scenario are plotted against each 
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other. Few differences occur between scenarios in their CPUE until between 2028 – 2030, 
depending on which Sau is considered. SAU 13 exhibits the relatively similar trends through 
time. In all other SAU the no meta-rule (noMR) and meta-rule 3 (MR3) scenarios exhibit a 
similar oscillatory trend except the noMR has a time-lag to reach the minimum CPUE of 
about 10-11 years. In all cases in all scenarios (except in SAU13) CPUE remains above 
100kg following the period of stock recovery. The MRall appears to achieve a relatively 
stable CPUE more rapidly than MR12 and does not reach such high levels. 

In terms of predicted catches MR3 returns catch to the fishery the fastest but then rapidly 
reduces it again to become more stable eventually. As with CPUE, noMR follows a similar 
pattern just 10 years more slowly. MRall leads to somewhat higher stable catches than MR12 
and once again appears to find an improved balance between speed of recovery of the fishery 
and a conservative return of catches. These outcomes are reflected in the predicted annual 
harvest rates as well. 

The mature biomass follows approximately the same trajectories in all scenarios until 2028-
2030 where they begin to diverge. noMR and MR3 aer both oscillatory with noMR lagging 
behind the MR3. MR12 and MRall are both more stable in their trajectories with the MR12 
scenario ending up with a somewhat higher level of mature biomass in all SAU except 
SAU13. While that is a positive thing for the stock it implies a somewhat lower final catch. 

The Productivity tab only exhibits a single table, which implies that all scenarios share the 
same productivity characteristics. If the selected scenarios differed in some factor that 
influenced productivity (perhaps different natural mortality values) then each different 
scenario would have its own table of productivity properties by sau. 

The Scores tab illustrates the final median harvest strategy scores for each sau and compare 
them in the plot. But each scenario has a table with the final scores tabulated. These data 
derive from functions within EGHS and will quite likely require changes when other Harvest 
Strategies are implemented. Given the harvest control rule implemented in the HS the median 
target would be a value of six (where values between 5 and 6 imply no change in catch). 

The HSPM tab contains tables that, for each sau (and sometimes the whole zone), is gives the 
median annual average variation in catch (aavc), the sum of the first 5 projection years of 
catch, and the sum of the first 10 projection years of catch. The variability of catches during 
the recovery stage is relatively low and it only begins to increase after about 10 years. Even 
so, this table demonstrates that MR3 tends to be more variable in its catches than the other 
three scenarios in all SAU. The sum to 5 and sum to 10 years illustrate differences between 
the scenario with the sum10 reflecting the rapid return of catches made by MR3 with MRall 
providing a more rapid return than either noMR or MR12. 

The Catches tab contains three plots and a table. The key plots are where the average annual 
variation of catches is plotted for each scenario x each sau, this is repeated for the sum of 
catches over the first five years, and then for the first 10 years. The effect on sau12 become 
apparent once again in each of these plots. The final table contains the boxplot statistics for 
each comparison and each sau. 

The catchBoxPlots is similar to the catches tab but contains boxplots for each sau for each 
scenario, for the three harvest strategy performance measures: aavc, sum5, and sum10. 

The cpueBoxPlots tab contains boxplots for each sau within each scenario of the years taken 
to achieve the maximum cpue, and for each sau x scenario, the years taken to achieve the 
median maximum cpue. 
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The C_vs_MSY tab contains plots for each scenario and sau of the ratio of the predicted 
catches divided by the predicted MSY for each sau, which is one of the preferred MSE 
performance measures. In the current example, the trajectory of return to near the MSY might 
be better illustrated by a new ribbon plot as seen in the zone tab, and this will be 
implemented. 

The ScenarioPMs tab contains a set of histograms of the deviations from a loess fitted, in 
each scenario, to all replicates across years. The mean and standard deviation of those 
distributions are tabulated below. This is a different measure of catch variability. 

The zone tab contains ribbon plot outlines of each scenario’s 90th quantile bounds for the 
total zone statistics, overlaid so that areas of overlap and differences become clear. The use of 
rgb colours allows for transparency so that the degree of overlap can become clear. When too 
many scenarios are included in a plot this can become confusing. 

 

 

Figure 4.3: The zone tab generated by the do_comparison() function. The base-case = EG, no meta-rules. 

 

The Catch, cpue, deplsB, depleB, and the harvestR tabs all use the same ribbon plots as in the 
zone tab except they repeat the information in the Dynamics tab in a manner that makes 
comparisons simpler for some people. 
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The Catch tab uses ribbon plots to illustrate the overlap and differences between the scenarios 
in terms of the combined catch for each sau. The use of semi-transparent colours helps to 
discern the level of overlap. 

 

 

Figure 4.4: The Catch tab generated by the do_comparison() function for sau12. The base-case = EG, no meta-rules. 

 

The cpue tab uses ribbon plots to illustrate the overlap and differences between the scenarios 
in terms of the cpue in each sau. Once again, the use of semi-transparent colours helps to 
discern the level of overlap. 

 

 

Figure 4.5: The cpue tab generated by the do_comparison() function for sau12. The base-case = EG, no meta-rules. 

The deplsB tab uses ribbon plots to illustrate the overlap and differences between the 
scenarios in terms of the mature biomass depletion levels in each sau. 
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Figure 4.6: The spawning biomass depletion tab generated by the do_comparison() function for sau12. The base-case = EG, 
no meta-rules. 

 

The depleB tab uses ribbon plots to illustrate the overlap and differences between the 
scenarios in terms of the exploitable biomass depletion levels in each sau. In the example, the 
differences found in sau12 become very clear. The results here are similar to those exhibited 
with the spawning biomass depletion, but remain of interest because the exploitable biomass 
is more closely associated with cpue than the spawning biomass. 

 

 

Figure 4.7: The exploitable biomass depletion tab generated by the do_comparison() function for sau12. The base-case = 
EG, no meta-rules. 

 

The harvestR tab makes it very clear that MR3, sustains oscillatory behaviour in terms of 
harvest rates (and other dynamics) much longer than the other scenarios. 
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Figure 4.8: The harvest rate tab generated by the do_comparison() function for sau12. The base-case = EG, no meta-rules. 

 

Finally, the phaseplots tab contains ten plots depicting, for each sau the effect of the different 
scenarios on the relationships, during the projections, of the following combinations of 
variable (using the medians in all cases): 1) actual catch/MSY vs exploitable biomass 
depletion, 2) actual catch/MSY vs mature biomass depletion, 3) actual catch/MSY vs Mature 
Biomass/Bmsy, 4) actual catch vs exploitable biomass depletion, 5) Actual catches vs mature 
biomass depletion, 6) Aspirational catch vs mature biomass, 7) Aspirational catch vs Mature 
Biomass depletion, 8) CPUE vs Actual catches, 9) Annual harvest rate vs actual catches, and 
10) Actual catches vs Exploitable biomass. 

 



70 
 

 

Figure 4.9: The harvest rate tab generated by the do_comparison() function for sau12. The base-case = EG, no meta-rules. 

 

4.4 Further Developments 

While above the text ended on “Finally, …” the comparison of scenarios is as areas still 
under active development and further additions continue to be made with different 
requirements for different jurisdictions. This, along with each jurisdiction’s harvest strategy, 
is another area where the needs of the different jurisdictions may differ and require either 
extra R source files or packages to be developed in each jurisdiction to provide the analyses 
and plots wanted in each region. 
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4.5 Appendix Structure of the output from do_comparison() 

Here we explore the structure of the outputs from do_comparion() by using the four scenarios 
comared in this chapter. 

The top level components of result are: 

str1(result) : List of 7 

 scenes : chr [1:4] “Base_Case” “EGMR12” “EGMR3” “EGMRall” 
 ans :List of 4 
 quantscen:List of 4 
 dyn :List of 4 
 prods :List of 4 
 scenprops: num [1:13, 1:5] 2.50e+02 3.54e+06 3.50e-01 1.00e-01 1.00e-01 … 
 devout :List of 2 

The scenes object is, as shown above, a character vector with the names of each scenario 

The ans object contains the outputs from each do_MSE() scenario. 

str1(result$ans) : List of 4 

 EG :List of 29 
 EGMR12 :List of 29 
 EGMR3 :List of 29 
 EGMRall:List of 29 

where each of he scenario lists have the following structure: 

str1(result𝑎𝑛𝑠EG) : List of 29 

 tottime : ‘difftime’ num 2.94 
 runtime : POSIXct[1:1], format: “2025-01-07 07:54:54” 
 starttime : POSIXct[1:1], format: “2025-01-07 07:51:58” 
 glb :List of 19 
 ctrl :List of 13 
 zoneCP :List of 56 
 zoneD :List of 14 
 zoneDD :List of 14 
 zoneDP :List of 14 
 NAS : NULL 
 projC :List of 5 
 condC :List of 15 
 sauout :List of 10 
 outzone :List of 13 
 production : num [1:71, 1:6, 1:56] 256 244 233 223 213 … 
 condout :List of 2 
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 HSstats :List of 2 
 saudat : num [1:32, 1:8] 21.5 0.3 130 1 54.3 … 
 constants : num [1:33, 1:56] 6 21.5 0.3 130 1 … 
 hsargs :List of 16 
 sauprod : num [1:7, 1:8] 438.882 149.874 20.272 0.341 140.632 … 
 zonesummary :List of 2 
 kobedata : num [1:8, 1:4] 0.33 0.449 0.258 0.242 0.313 … 
 outhcr :List of 8 
 scoremed : num [1:30, 1:7] 42.8 35.3 31.8 31.5 33.4 … 
 popmedcatch :List of 8 
 popmedcpue :List of 8 
 popmeddepleB:List of 8 
 pops : num [1:56, 1:26] 1 2 3 4 5 6 7 8 9 10 … 

and would include the numbers-at-size objects is these were saved with NAS=TRUE. 

The result$quantscen object and internal structures contain the quantiles for the dynamics of 
each SAU for the four variables cpue, catch. matureB, and harvestR, with the 0.025, 0.05, 
0.5, 0.95, and 0.975 quantiles across the reps replicates, giving the central 95%, and 90% 
ranges and the median. 

str1(result$quantscen) : List of 4 

 cpue :List of 4 
 catch :List of 4 
 matureB :List of 4 
 harvestR:List of 4 

str1(result𝑞𝑢𝑎𝑛𝑡𝑠𝑐𝑒𝑛cpue) : List of 4 

 Base_Case:List of 8 
 EGMR12 :List of 8 
 EGMR3 :List of 8 
 EGMRall :List of 8 

str1(result𝑞𝑢𝑎𝑛𝑡𝑠𝑐𝑒𝑛cpue$Base_Case) : List of 8 

 sau6 : num [1:5, 1:30] 97.6 99.9 110.3 121.3 123.1 … 
 sau7 : num [1:5, 1:30] 111 112 124 136 140 … 
 sau8 : num [1:5, 1:30] 149 150 161 174 177 … 
 sau9 : num [1:5, 1:30] 117 119 131 143 148 … 
 sau10: num [1:5, 1:30] 96 97.1 104.5 112.8 114.7 … 
 sau11: num [1:5, 1:30] 89 90.4 97.2 106.6 107.9 … 
 sau12: num [1:5, 1:30] 83.4 85 89.9 95.9 96.9 … 
 sau13: num [1:5, 1:30] 84.7 85.5 89.5 93.7 95.2 … 
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The structure of the dyn object within result provides all replicates within the dynamics for 
each SAU. Each of the scenarios is made up of arrays of 88 years including the historic years 
and the projections, the 8 SAU, and the 250 replicates. 

str1(result$dyn) : List of 4 

 EG :List of 10 
 EGMR12 :List of 10 
 EGMR3 :List of 10 
 EGMRall:List of 10 

str1(result𝑑𝑦𝑛EG) : List of 10 

 matureB : num [1:88, 1:8, 1:250] 439 438 436 429 409 … 
 exploitB: num [1:88, 1:8, 1:250] 415 414 413 409 395 … 
 midyexpB: num [1:88, 1:8, 1:250] 0 431 430 428 421 … 
 catch : num [1:88, 1:8, 1:250] 0 1 2 8 22 … 
 acatch : num [1:88, 1:8, 1:250] 0 1 2 8 22 … 
 harvestR: num [1:88, 1:8, 1:250] NaN 0.00232 0.00465 0.0187 0.05228 … 
 cpue : num [1:88, 1:8, 1:250] 0 437 436 432 422 … 
 recruit : num [1:88, 1:8, 1:250] 259139 259078 258961 258478 257088 … 
 deplsB : num [1:88, 1:8, 1:250] 1 0.998 0.994 0.977 0.933 … 
 depleB : num [1:88, 1:8, 1:250] 1 0.999 0.996 0.985 0.953 … 

The structure of result$prods object provides the productivity characteristics of each SAU. 

str1(result$prods) ; List of 4 

 EG : num [1:8, 1:7] 439 872 524 2439 2072 … 
 EGMR12 : num [1:8, 1:7] 439 872 524 2439 2072 … 
 EGMR3 : num [1:8, 1:7] 439 872 524 2439 2072 … 
 EGMRall: num [1:8, 1:7] 439 872 524 2439 2072 … 

result𝑝𝑟𝑜𝑑𝑠EG 

          B0      Bmsy       MSY      Dmsy     CEmsy  Hmsy     Bexmsy  

 sau6 438.8820 149.8744 20.27160 0.3414914 140.63196 0.195 91.32144 
 sau7 872.1711 272.7968 43.73620 0.3127790 115.88669 0.200 191.66429 
 sau8 524.4789 166.0719 24.93913 0.3166417 194.81373 0.175 126.23452 
 sau9 2438.8778 748.3589 122.48502 0.3068456 198.17074 0.180 600.52685 
 sau10 2071.9641 616.6733 102.77587 0.2976274 142.30645 0.170 536.12436 
 sau11 4152.7893 1257.9882 207.63196 0.3029261 140.28520 0.180 1018.44438 
 sau12 3126.2611 951.3633 156.59858 0.3043135 91.10815 0.175 792.96791 
 sau13 915.9109 303.9922 41.73923 0.3319015 75.48181 0.190 193.28620 

The result$scenprops object contain the properties of each scenario used to ensure that like is 
being compared with like. The same column identifies any rows which have difference 
between scenarios. 
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result$scenprops 

        Base_Case     EGMR12      EGMR3    EGMRall same  

 reps 250.00 250.00 250.00 250.00 1 
 randseed 3543304.00 3543304.00 3543304.00 3543304.00 1 
 sigR 0.35 0.35 0.35 0.35 1 
 sigB 0.10 0.10 0.10 0.10 1 
 sigCE 0.10 0.10 0.10 0.10 1 
 projyrs 30.00 30.00 30.00 30.00 1 
 numpop 56.00 56.00 56.00 56.00 1 
 nSAU 8.00 8.00 8.00 8.00 1 
 Nclass 105.00 105.00 105.00 105.00 1 
 hyrs 58.00 58.00 58.00 58.00 1 
 pyrs 30.00 30.00 30.00 30.00 1 
 larvdisp 0.01 0.01 0.01 0.01 1 
 initdepl 1.00 1.00 1.00 1.00 1 

The result$devout object contains, for each SAU, the mean deviates from a loess fitted to 
each catch replicate as well as their standard deviation. This repeats the tables and 
complements the plots seen in the ScenarioPMs tab in the do_comparions() HTML output. It 
compares the variability of catches within each SAU across scenarios across the full set of 
projection years. In the meandevs table below for example, notice in SAU6 how the mean for 
EGMR3 is more than twice that of the other scenarios. 

str1(result$devout) : List of 2 

 meandevs: num [1:4, 1:8] 22.4 16.9 55.2 21.4 51 … 
 sddevs : num [1:4, 1:8] 5.2 4.27 15.61 6.65 13.6 … 

result𝑑𝑒𝑣𝑜𝑢𝑡meandevs 

           sau6     sau7     sau8     sau9     sau10    sau11    sau12     
sau13  

 Base_Case 22.36759 51.00718 27.86222 123.9374 89.31076 211.9045 139.0051 
100.81643 

 EGMR12 16.88400 42.09966 23.32073 116.9489 88.71891 196.1574 127.8207 
75.98318 

 EGMR3 55.17959 98.20418 75.87913 344.6366 185.62404 519.1445 314.5054 
147.18156 

 EGMRall 21.43495 51.51618 32.01075 160.5546 119.10000 265.3326 172.1482 
87.70842 
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5. The Input Files 

5.1 aMSE Requirements 

There are a number of requirements when conducting a Management Strategy Evaluation of 
alternative harvest strategies on an abalone fishery using the aMSE R package. It is currently 
best to use the RStudio integrated development environment, as this facilitates the installation 
of different R packages, and the editing and running of the R files used to conduct the actual 
scenario runs (see the Using the aMSE Software chapter). 

The R packages required to run a scenario include at least: 

 aMSE the main R package containing the operating model and auxiliary functions 
used. 

 codeutils an R package containing numerous utility functions that are common to many 
simulation tasks. 

 hplot an R package containing functions that facilitate the generation of various plots. 
 makehtml an R package used to generate the multi-tabbed web-pages that can display 

the results generated. Not strictly required for running the scenarios but is helpful for 
displaying the results in an accessible manner. 

 jurisdictionHS.R a source R file containing functions unique to a particular 
jurisdiction’s harvest strategy, or a package such as: 

 TasHS is a new R package that encapsulates the harvest strategy used in Tasmania, 
which is used as an alternative to having a jurisdictionHS.R. The input constants used 
by some of those Tasmanian HS R functions still need to be declared in hsargs before 
running the MSE. Using an R package rather than an R source file helps guarantee 
that the same software is used in all scenarios and makes it easier to maintain or 
modify the harvest strategy as required. In the examples herein, a stable but cut-down 
version of TasHS called EGHS is used. 

These five packages are available from https://www.github.com/haddonm. 

 knitr an R package used in vignette preparation and the production of formal tables in 
aMSE’s output (obtainable from CRAN). 

Most importantly, for this chapter, there are also a number of other data files required for a 
scenario run and these are all .csv files. In the sections below we will go through their 
structure and contents in detail to act as a guide to their format and functioning. Each can be 
generated using the template functions within aMSE (see the Using_aMSE chapter for 
details): 

 a control_scenario.csv file (whose name can be anything the user wishes), that holds 
control options, many other constants, and identifies other input files. 

 a saudata.csv file, that holds parameterizations of the biological properties of the sau 
and the populations that make up the operating model. 

There may also be other data files if such data are available, these include: 

 a size-composition of commercial catch data file (default from the rewritecompdata() 
function is lf_WZ90-20.csv, which is also used in the control file from 
ctrlfiletemplate()) 
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 a size-composition of fishery-independent survey file, with the same internal format as 
the fishery size-composition file. 

When using the R package aMSE a typical scenario run would entail a number of 
fundamental steps, although most of these are not immediately obvious tpothe user: 

 Initiate each population within each sau in the operating model with its biological 
properties. 

 Generate the equilibrium unfished zone across all populations and estimate the 
productivity of each population (and hence each sau and the total zone). 

 Condition the operating model using either a hypothetical depletion or apply historical 
fishery data until the simulated zone is ready to be projected under control of the 
particular harvest strategy being considered (Figure 5.1). 

 Conduct the projections and summarize the results. 

 

 

Figure 5.1: A spectrum of alternative approaches for initiating and using the MSE framework. The initial depletion can be 
no initial depletion. 

 

5.2 File Locations for each Scenario 

Within aMSE, for each scenario considered, it is designed so that all related input files 
(control, data, and size composition data, (and jurisdictionHS.R if that is being used rather 
than an HS package), and all result files will be contained in the same directory. Within the 
aMSE code, this directory is referred to as the rundir (as in run-directory). It is suggested that 
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each scenario run be given a unique name that is then used as the rundir name (the postfixdir 
as described in the Using aMSE chapter). For example, if examining the influence of the legal 
minimum length (LML) on the outcome of using a particular harvest strategy (perhaps using 
the TasHS R package) one might have the following scenarios: rundir = “EGlml140”, 
“EGlml145”, “EGlml150”, and so on, all contained in a sub-directory named ‘scenarios’ (or 
whatever you wish; for example, Malcolm, is a good name, though you may be able to think 
of more appropriate ones). This would facilitate future comparisons by simplifying 
identification and selection of those scenarios to be compared. The names also suggest they 
are all variants of the “EG” basecase scenario. But of course, a user may name their rundir 
whatever they wish. The aim of aMSE is to facilitate running an MSE on abalone, not to 
force people to work effectively or efficiently! 

The intent is that the control.csv, saudata.csv and the lf_data.csv files (and jurisdictionHS.R 
file if you have one) are stored in the rundir for each given scenario explored. This may entail 
duplicating the saudata.csv, lf_data.csv, and jurisdictionHS.R files between scenarios (one 
reason an HS R package is a sensible option) so care needs to be taken that if one changes 
these underlying files then those changed files need to be propagated across all sub-
directories in which they are used. This is the responsibility of the operator. A simple way 
of making such copies has been illustrated when discussing the comparison of scenarios in 
the Comparing Scenarios chapter. 

Here we will focus solely on the control and data files. There are functions to generate data 
file templates for each of the data-file types ctrlfiletemplate(), datafiletemplate(), and 
rewritecompdata(), which uses the internal data set data(lf). These can be run and the 
resulting templates edited to form the required files, this also automatically illustrates the 
required format. Alternatively, another option is to use the example data-files, made available 
with the aMSE package, which can be saved, copied and edited appropriately. 

Similarly, within aMSE, there are functions to read in each type of data-file. If there is a 
formatting error within the data-file it should throw an error which identifies where it has 
gone wrong. Further development is intended to these error checks. Using the template 
functions and editing the results can be simpler than starting from scratch. 

The input data-files, currently, are all required to be .csv files where components with 
multiple values use a comma as a separator. This makes their preparation using software such 
as Microsoft Excel relatively simple. They can also be edited directly in the editor pane of 
RStudio (or any other text editor). 

The first of the two files is the control_scenario.csv (I name mine by including reference to 
the scenario, as in controlM15h7L75.csv, (natural mortality M=0.15, steepness h=0.7, and 
lambda L=0.75). This file contains a wide range of settings concerning the structure of the 
Operating Model as well as where to find any historical conditioning data from a given 
fishery (catches, cpue, recruitment deviates), if such conditioning is required. The second file 
would then be named saudataM15h7L75.csv and contains the data that is used to define the 
biological properties of each sau that make up the simulated zone. The rest of this document 
provides a detailed description of the contents and format of these files. The third file, 
another data file, would contain the size-composition data used to condition the scenario, if 
available. 

If the user has used longer filenames to describe their scenarios this can lead to many plots 
becoming confused as the scenario names are used in the figure legends when making 
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comparisons. This is why do_comparisons() has an altscenes argument, that allows 
alternative scenario names to be allocated for use in the figures. 

5.3 The Conditioning Requirements 

There is a spectrum to the degree to which the operating model needs to be conditioned on a 
real fishery. At the least specific, one still has to include a spatial structure that would reflect 
a typical abalone stock. In aMSE the top level is the zone, which can contain even a single 
SAU, which must contain one or more populations. Hence the smallest simulated zone would 
constitute a single SAU with a single population (this might be used to compare the effect of 
included an array of populations within an sau). The example data-sets within aMSE exhibit 
a spatial structure of 8 SAU with a total of 56 populations. This hierarchy can be customized 
to suit a particular jurisdiction and species, and one could then include what might be deemed 
typical characteristics of growth, maturity, emergence, and other details, including variation 
among the different populations found within each SAU. Even with such details it would 
remain a generic abalone MSE (Figure 5.1). 

It is possible to take such conditioning a step further and customize the details of the biology 
of each SAU, or even each population making up the spatial structure, to reflect the biology 
known for a real fishery zone (assuming there are field data available). One could also scale 
predicted productivity and cpue to match a real fishery. This would be less generic but still 
not exactly fitted to a real fishery. The detailed spatial structure internal to the operating 
model is what makes it impossible to fit the operating model to fishery data as a whole. 
However, it might still be possible to fit the productivity and fishing history of individual 
SAU to real fishery data and thereby gain estimates of actual productivity and possibly even 
recruitment deviates (see Using_sizemod_to_Condition the SAU). Of course, while this latter 
approach would appear, at first glance, to be the best strategy for examining a harvest 
strategy, as it might operate in a real situation, it is also the most demanding in terms of data 
and difficulty. One can spend large amounts of time iteratively improving an operating model 
fit to observed catches, length-composition, and CPUE data for each SAU (Figure 5.1). 
While this is a fine way to spend time (a lot of time, and I really mean a lot of time) it is also 
a good strategy to remember that there is a spectrum of how closely one needs to reflect 
nature and that some questions about harvest strategies do not require the best possible fit to a 
real fishery to remain useful for determining the implications of alternative management 
options (see for example, Pourtois et al, 2022). 

5.4 The control_scenario.csv File 

The control file is a .CSV file made up of a series of sections and each will be described in 
turn. The values expressed in this document may differ from those generated by the 
ctrlfiletemplate() function, but the descriptions are valid. Within the control.csv file (which 
can have any name you wish, it does not have to be control.csv, though it does have to be a 
.csv file), the main section headings are usually written using capital letters for increased 
clarity. The correct spelling of such section title is important, as is the spelling of the variable 
names in the first column. The order of the sections does not need to be strictly maintained 
but the order of any components within each section must be maintained as described. This is 
required because in a number of cases they are being parsed in sequence, though many are 
also being obtained explicitly by name (which is why typing/spelling the names correctly is 
also important; the template files are all correct). Where the labels or names are not clear as 
to the intent of the variable then a description can be given to the right of the actual values. 
Comments can be inserted anywhere outside of any of the sections. This is all exemplified in 
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the .csv file generated by ctrlfiletemplate(), which we will assume was given the default name 
controlEG.csv. 

To aid understanding this document it would help the reader to have a copy of the .csv file 
generated by ctrlfiletemple() open in a window. 

 

5.4.1 DESCRIPTION 

At the top of the controlEG.csv file is an optional description section that can be used to 
describe the objective of the scenario implied by the control and population files. The author 
can add as many lines of text to this section as desired as, currently, it is not used in the 
model run. This may change later so it may act as meta-data for each run. It would be useful 
to treat this section as such meta-data anyway. 

DESCRIPTION 

Control file containing details of a particular run 
Modify the contents to suit your own situation 
I have added these next lines, which do not influence reading the file 
If you wish you should modify the contents of this description to suit 
the scenario being executed, use as many lines as required for 
your own description. 

 

5.4.2 START 

The start section currently has four components, a name for the particular run (which gets 
used on the home tab/page of the output web-page but is most useful when comparing 
scenarios so make it informative!), the full name of the saudataEG.csv file (which is expected 
to be found in the same rundir as the controlfile). In each case, note the use of commas to 
separate a variable’s label from each variable’s value (cannot be seen if opened in Excel, but 
as long as the file is saved as a csv file all will be well). The hopefully descriptive text after 
each variable’s value(s) is ignored by the program and can be expanded if desired (as long as 
it remains as a single line, the comments below are expanded to include more explanation but 
you should not have multiple lines). Such descriptive text should not include commas as this 
will break it up into separate Excel cells 

START 

 runlabel, Base_Case, label for particular scenario. Very important when comparing 
scenarios. 

 datafile, saudataBC.csv, name of saudata file = saudataBC.csv 
 bysau, 1, 1=TRUE, 0 = FALSE are we expecting data by SAU or population. 

Generally, one would use by sau, but an option exists to operate with populations 
explicitly. (see Conditioning by Population.). 

 parfile, NA, name of file containing optimum parameters from sizemod, this is used to 
simplify transferring information from sizemod to aMSE during conditioning. 
Generally, this is NA, which means it gets ignored (see the chapter on Using sizemod 
to condition the SAU). 
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5.4.3 zoneCOAST 

The zoneCOAST section (an odd/old name, which may change to become something more 
descriptive, but once something is named then coding inertia can set in) currently contains 
four components. 

zoneCOAST 

 replicates, 100, number of replicates normally at least 250 or 500, in the code this is 
found in glb named reps. 

 withsigR, 0.35, recruitment variability eg 0.35, this literally varies recruitment in a Log-
Normal fashion during projections and the last few years of the conditioning. 

 withsigB, 0.1, process error on exploitable biomass. This affects the fleet dynamics so 
that, in Tasmania, the actual SAU catches end up rather different from the aspirational 
catches, though they all sum to the TAC. Elsewhere it could be used in the equivalent 
fleet dynamics function within the JurisdictionHS.R source file or R package. 
 

 withsigCE, 0.1, process error on cpue calculations. This will vary the relationship 
between cpue and exploitable biomass by including Log-Normal errors. For example, 
a value of 0.025 will varying the apparent exploitable biomass in individual model 
events between 0.9 - 1.1 times the actual value. 

In the code base, the three sources of variation (withXXXX) reside in the ctrl object. 

withsigR relates to the year-to-year recruitment variability. This does not include any special 
recruitment events or recruitment deviates that may be included. During the generation of the 
equilibrium, unfished model, recruitment variation is set to a very small number, 1e-08, so 
that recruitment processes are effectively deterministic off the Beverton-Holt stock 
recruitment relationship. While there appears to be no evidence of auto-correlated recruitment 
residuals the intent is that these will eventually be included as an option (see Operating 
Model Structure for further details of the model equations). It is possible to include 
exceptional events in particular years within the projections that influence recruitment and/or 
survivorship. This is intended to allow for the exploration of the implications of such things 
as marine heat waves, exceptional storms, and other potentially damaging events. Details are 
given in the Perturbations within Projections chapter. 

𝑅,௧ ൌ
4ℎ𝑅𝐵,௧

ௌ

ሺ1 െ ℎሻ𝐵  ሺ5ℎ െ 1ሻ𝐵,௧
ௌ 𝑒ఌ,ିఙೃ

మ/ଶ 

where 𝜀,௧ is defined as: 

𝜀,௧ ൌ 𝑁ሺ0,𝜎ோ
ଶሻ 

withsigB the fleet dynamics of where divers elect to take their catches within an SAU mean 
that the actual catches from each SAU differ from the aspirational catches allocated to each 
SAU according to whatever harvest control rule is used. This will be determined within each 
jurisdictions HS R package, and may be different to the description given here, which only 
reflects the case in Tasmania. This is implemented by first allocating catches to the SAU in a 
deterministic manner and then modifying them by imputing variability to the perceived 
distribution of biomass among SAU, denoted 𝑢, which is then propagated across component 
populations: 
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𝐵௨,௧
ா,∗ ൌ 𝐵௨,௧

ா 𝑒ఌೠ,ିఙಳ
మ/ଶ 

where: 

𝜀௨,௧ ൌ 𝑁ሺ0,𝜎
ଶሻ 

𝜎, withsigB, is the standard deviation of the variation that occurs between the real 
exploitable biomass and the perceived distribution of exploitable biomass across SAU’s, and 
also includes other sources of uncertainty. 

This variation is introduced into the potential SAU catches using: 

𝐶௨,௧
∗ ൌ 𝑇𝐴𝐶௧ ൈ

𝐵௨,௧
ா,∗

∑𝐵௨,௧
ா  

where 𝑇𝐴𝐶௧ is the sum of the HCR’s aspirational catches in each year 𝑡. One diagnostic 
used during conditioning (see the DiagProj tab in the webpage) is to examine the variation 
between the actual catches and the aspirational catches previously determined by the HCR, if 
one has such data. Otherwise, it should be characterized from the outputs, which will allow 
its variation to be examined for plausibility. 

withsigCE designates the imprecision in the relationship between cpue and exploitable 
biomass. Essentially, it is used to generate a Log-Normally distributed random number about 
the value 1.0, which is then used to multiply the actual exploitable biomass. This is all 
conducted at the population scale (see oneyearcat code in dynamics.R). Given: 

𝜀௨,௧ ൌ 𝑁ሺ0,𝜎ଶ ሻ 

then bias-corrected Log-Normal errors depicted as: 

𝑒𝑟𝑟 ൌ 𝑒ఌೠ,ିఙమ /ଶ 

If 𝜎  is set extremely small (say, 1e-08), then 𝑒𝑟𝑟 is essentially equal to one, otherwise 
some variation around 1 will occur and be introduced into the estimate of cpue or each 
population. This would be whether hyperstability is also implemented in the cpue. 

𝐶𝐸 ൌ 𝑞 ൈ 𝐵ா ൈ 𝑒𝑟𝑟 ൈ 1000 

where 𝐵ா  is the average of the mid-year and end of year exploitable biomass. A 𝜎 ൌ
0.025 value of provides a range of multipliers on the exploitable biomass of between 0.9 
and 1.0: 
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Figure 5.2: Typical range of process error multipliers for a sigce value = 0.025. 

 

Figure 5.3: Typical range of process error multipliers for a sigce value = 0.15. 

5.4.4 ZONE 

Again, the use of commas to separate variable values is essential. The zone is defined in 
terms of the number of SAU (spatial assessment units) it is made up of. 

ZONE 

 nSAU, 8, number of spatial assessment units eg 2 
 SAUpop, 3, 3, 5, 7, 9, 9, 12, 8, number of populations per SAU in sequence. The phrase, 

‘in sequence’ relates to the idea of distributing the SAU, and their contained 
populations, along the coastline in an approximately linear manner. This simplifies 
the larval dispersal matrix, which currently assumes the populations are aligned along 
the coastline approximately linearly. 

 SAUnames, sau6, sau7, sau8, sau9, sau10, sau11, sau12, sau13, labels for each SAU 
 initdepl, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, initial depletion levels for each SAU. 

In the code, nSAU, SAUpop, and SAUnames all reside in the glb object, inexplicably, 
SAUnames in the glb object is called saunames. The initdepl values are held in the condC 
object used when conditioning the zone. 
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The example file from ctrlfiletemplate() inserts the number of populations among SAU that 
reflect the current selection in the Tasmanian Western Zone, but each simulated zone would 
be expected to be different. The SAUnames should only be mixtures of letters and numbers 
but must not contain spaces. The initdepl is the intended initial depletion before either the 
model run or further conditioning. If any of the initdepl values for any SAU is < 1.0 then, 
once the equilibrium zone is achieved it will undergo a depletion event (see the help on the 
function depleteSAU()) 

5.4.5 SIZE 

The size structure range used in the example data files was originally selected to suit the 
Tasmanian blacklip abalone fishery. Hence it extends the midpoints of each 2mm size class 
from 2mm - 210mm, with the 210mm class being a plus group. These values will not 
necessarily make sense for other jurisdictions or species. Haliotis roie, for example, will 
require a much smaller upper size, and might possibly use 1mm size classes, depending on 
how data are collected. 

SIZE 

 minc, 2, centre of minimum size class, classes are 1-3,3-5,5-7…, centered at 2,4,6,… 
 cw, 2, class width mm 
 Nclass, 105, number of size classes, leading to a maximum midpoint of 210mm 

These values lead to the dynamics being described within vectors and matrices ranging from 
2 – 210 in 2mm size classes. Of course, each of these values can/should be altered to suit the 
biology of the species concerned. The derived midpts defining the size-classes, and the 
Nclass reside in the glb object. 

5.4.6 RECRUIT 

Larval movement between Tasmanian blacklip populations has been demonstrated to be 
remarkably low. Nevertheless, there will undoubtedly be some small amount of larval drift 
between populations, which operate on a smaller scale than the SAU within which they are 
found. With no generic estimates of this movement rate it is assumed that the populations are 
generally aligned linearly along the coastline and such larval movement is a small constant 
rate. 

A linear arrangement along the coast is obviously an approximation but one should attempt to 
arrange the SAU and component populations in this manner or else the movement matrix will 
need to become rather more complex (which remains a possibility, but in the absence of data 
one can only wish you luck). 

RECRUIT 

larvdisp, 0.01, rate of larval dispersal eg 0.01 = 0.5 percent of recruits in each direction 

The value of larvdisp is used to construct a simple larval movement matrix that assumes 
movement only occurs between adjacent populations at a rate of half the larvdisp value. 
While a value of 0.01 may appear almost trivial this does affect the equilibrium dynamics, 
but the effects are generally only minor. However, by including this it is now possible to 
determine the explicit effect of different levels of larval movement, and this would enable the 
importance of the relative isolation of the different species to be explored. The movement 
matrix is contained with the ‘globals’ object glb, where it can be tabulated and visualized. 



84 
 

5.4.7 RANDOM 

There will often be a need to control the generation of random numbers used during both the 
definition of the populations and the projections. The use of a random seed is especially 
important when conditioning the operating model as many random numbers are used during 
that process and if the conditioning is intended to simulate a specific fishery, then the 
distribution of productivity needs to remain the same during each model run. The truth of this 
will become more apparent during the description of the saudataEG.csv file contents and uses 
in sections below. 

The use of specific random seeds might be wanted, for example, if one wanted to be sure to 
repeat a particular analysis exactly, of perhaps to see only the effect of changing an argument, 
perhaps the LML, while making no other changes. So, to ensure the production of the same 
sequence of pseudo-random numbers, one uses set.seed. Under RANDOM we have two 
values, the first, randomseed is used for repeatability of population generation when 
conditioning the model. By default one would expect this to have a value. The second value, 
randomseedP is used for repeatability during the projections. Each scenario could have a 
different randomseed and, optionally, randomseedP, although one should think carefully 
about what one is comparing between scenarios when making this choice. Using the same 
seed for all scenarios compared ensures any differences seen are due the changes to the 
harvest strategy and are not due to the biological properties used. Ideally, one would conduct 
comparisons with the same initial randomseed. But would use both the same or different 
randomseedP for the projections so as to capture the fill range of variation. One can (should) 
use getseed() from codeutils to generate such seeds. It is recommended that one not try to 
generate one by oneself. The literature suggests that 12345 tends to be used more often than 
would be expected at random(!) so it, and others akin to it are just not good enough. 

If one does not want to set the random seeds and just use any old random sequence that 
comes along then set randomseed and randomseedP to 0. By default, randomseedP is set to 
zero. 

RANDOM, Set these to zero for non-repeatable starting points. 

 randomseed, 3543304, for repeatability of population definitions if >0 
 randomseedP, 0, for repeatability of projections by simply continuing with the sequence 

started by the randomseed value, if a different randomseedP is used, then a new set 
sequence of pseudo-random numbers will occur, or if set to NA a random new 
sequence will occur each scenario run., 

5.4.8 initLML 

However the model is to be run (Figure 5.1), all scenarios begin by generating an unfished, 
equilibrium model. This includes a characterization of the equilibrium productivity of each 
population and this will require a description of selectivity to be used, hence we need an 
initial LML. The fishery productivity is altered when the LML is changed because it alters 
the balance between natural mortality, growth, and fishing mortality. Smaller LML do not 
always generate the highest levels of productivity (this becomes a yield-per-recruit problem, 
although that also, of course, depends upon the biological properties of growth). 

initLML, 140, used to generate unfished zone if no historical catches and LML present 

If the conditioning is to include the application of historical catches the different SAU may 
still require an initial depletion (which can be set at 1.0) and an initial LML. If conditioning 
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on historical catches, then it makes sense to initiate the model at the LML in use at the start of 
the historical catches. If a generic MSE is being conducted, for example, a generic west coast 
Tasmania starting projections in 2020 or 2021, then perhaps initiate the model at an LML of 
140, although, as in the file generated by ctrlfiletemplate(), project the dynamics forward 
from 2020 with an LML of 145 (see PROJLML later). 

5.4.9 PROJECT 

Basic information about the projection period of the simulations. Elsewhere we add together 
the projection years (here pyrs=30) and the historical years, hyrs, value (see CATCHES) to 
obtain the total number of years of the final projections. These values are found in the glb 
object, along with the year names for each sequence of years (as in hyrnames and pyrnames). 

PROJECT, 30, number of projection years for each simulation 

 

5.4.10 ENVIRON 

The entries under the ENVIRON heading are designed to allow the introduction of 
exceptional events into specific years during the projections. For example, the incidence of 
marine heat wave events is increasing and are of such a degree that their impacts can 
influence subsequent recruitment and the survivorship of settled animals. If one wants to 
introduce such an event in a given year, or years, then define how many years after the 
ENVIRON header. Here we will introduce values that relate to two years of events, 
happening in the fifth and eighth projection years. In each case, the proportion of recruits in 
that year that survive is listed for each sau. Because there are two years the software expects 
two rows (beginning with ‘proprec’). If only one year, then there would be only one ‘proprec’ 
line (and so on). Following those lines are the survivorships of the settled animals, in this 
case, 99 percent are given as surviving, so the effect is primarily through the recruitment. 
Note that setting ENVIRON to zero means any environmentally induced effects are set to 
NULL and will have no effect. For more details and examples, see the Perturbation within 
Projections chapter. 

ENVIRON, 0, in how many years will an event occur, 0 means have no events 
eyr, 5, 8, which projection years will have an event 
proprec1, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, one for each sau 
proprec2, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, one for each sau 
propNt1, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 
propNt2, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 

 

The passage of any ENVIRON objects through aMSE follows a simple path: 

In inputfiles.R readctrlfile -> envimpact -> glb -> 

In projection.R doprojections -> 

In dynamics.R envimpact is used by both [oneyearcat & oneyearsauC] 

The eyr determines which years have an impact. 

If the year is in the eyr vector, then: 
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 in sauyearsauC, sigR is reduced by a factor of 10 and the value of the stock recruitment 
curve is multiplied by proprec, thus reducing the basline recruitment. 

 in oneyearcat, the input numbers-at-size for that year is multiplied by the proportion 
surviving the environmental effect: inNt=(inN[,popn] * survP). 

5.4.11 PROJLML 

Under the PROJECT heading we read in a line for each of the projection years. Assuming 
that PROJECT > 0, then readctrlfile() looks for the heading PROJLML. The LML used in the 
projections are listed here explicitly so that changes through time can be easily implemented. 
There needs to be at least as many defined as the value of PROJECT (which becomes pyrs, 
see str1(glb)), here that is 30. The projLML are used to define the selectivity for each of the 
pyrs during the projections. Tasmania introduced a west coast LML = 150 in 2024 so that 
change should be included in future projections, though obviously it has been omitted from 
simulations made before 2024. The LML for the projections are included in the projC object. 

PROJLML, need at least the same number as there are projection years 

2020,145, the year and the Legal Minimum Length (LML, MLL, MLS) e.g. 140 
2021,145, 
2022,145, 
2023,145, 
… 
… 
2050,145, 

 

5.4.12 CATCHES 

If CATCHES is > 0 then one would need to include that number of years of historical catches 
by SAU along with the year and LML that was used when the catches were taken. An 
example is given below of the required format. If CATCHES = 0, then any data here will be 
ignored. If CATCHES > 0 then readctrlfile() looks for a heading CondYears and then reads in 
CATCHES rows with the following format. Here the catches are in tonnes. 

CATCHES,58, if > 1 then how many years in the histLML 

CondYears,LML,6,7,8,9,10,11,12,13, column names for convenience only 
1963,127,0,0,0,0,0,0,0,0,, a line of zeros for initial equilibrium state 
1964,127,1,1,1,4,3,5,4,1, the year, the LML, the catches by SAU 
1965,127,2,3,4,17,15,21,19,5, 
… 
… 
1987,132,31,84,44,251,82,339,195,64, 
… 
… 
2019,140,16,53,5,65,81,179,251,53, 
2020,145,7,27,6,39,58,129,227,50, 
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5.4.13 CEYRS 

CEYRS is similar to CATCHES in that it defines how many years of cpue data will be read in. 
The required format is given below for CEYRS = 29. 

IMPORTANT: If CEYRS = 0, then any cpue data will be ignored. Note that in the early years 
there appears to be cpue data missing from SAU6 and SAU13, which are present in the latest 
years. This is because, in Tasmania, zonation was only introduced in 2000, so cross-zone 
blocks such as 6 and 13 cannot be included prior to 2000. 

,6,7,8,9,10,11,12,13, again, not used here just as labels 

CEYRS,29, if >0 then number reflects number of historical CPUE records by SAU 
1992, ,113.4, 94.2, 97.0, 99.4, 98.1, 100.19, , 
1993, ,116.8, 110.38, 109.37, 99.1, 107.88, 102.20, , 
… 
… 
2018, 106.68, 143.57, 148.43, 133.70, 104.38, 95.01, 106.88, 104.08, 
2019, 92.22, 112.70, 107.11, 93.65, 91.89, 86.94, 90.03, 90.78, 
2020, 92.01, 113.01, 112.10, 99.10, 92.10, 87.10, 93.10, 92.10, 

5.4.14 SIZECOMP 

Size-composition data is akin to the biological properties data in being potentially a large 
amount of data which might confuse the structure and editing of of the control file. Hence we 
use this to refer to a filename containing the required data. If SIZECOMP = 0 then no file will 
be read in, otherwise a list of filenames will be expected and these should be stored in the 
rundir. The filenames should begin in the row immediately below SIZECOMP. 

SIZECOMP,1 
lf_90-20.csv 

The format of the size-composition .CSV data file should be the following, of course the 
years and size classes used should reflect your own data (see the output of writecompdata() 
for the full format): 

length, sau, 1984, 1985, 1986, … , 2019, 2020 
120, 7, 0,0,0, … , 0,0 
122, 7, 0,0,0, … , 0,0 
124, 7, 1,1,2, … , 0,0 
126, 7, 1,3,4, … , 0,0 
128, 7, 3,19,26, … 0,0 
…, 7, 
…, 7, 
208, 7, 0,0,0, … , 0,0 
210, 7, 0,0,0, … , 0,0 

By using this format it is possible to use the function getLFdata() to read the data into the 
program. Try ?getLFdata. These data are read in and returned to the program within the 
condC object. 
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5.4.15 RECDEV 

Conditioning the data on historical catches and cpue will entail searching for an AvRec value 
that approximates the long-term productivity of the unfished stock. This should place the 
predicted cpue approximately through the observed cpue. However, one can expect to see 
deviations, some relatively large. After fitting numerous example models it becomes clear 
that average recruitment off the stock recruitment curve provides an inadequate description of 
the dynamics of any abalone fishery. It is possible to adjust the rise and fall of the predicted 
cpue by imposing recruitment deviates in particular years. Recruitment deviates are expected 
to take the form of Log-Normal variation, which vary around the value 1.0. If the model 
predicted recruitment matched the Beverton-Holt predicted recruitment exactly this would 
imply a recruitment deviate value = 1.0 as each average recruitment value is multiplied by the 
deviate. Thus, if recruitment is taken to be lower than the stock-recruitment curve would 
predict, then the deviate would be less than 1.0 and if recruitment was greater than expected 
the deviate would be greater than 1.0. These are best fitted iniitally using the sizemod R 
package but if this fails through, for example, inadequate contrast in available data, then 
cruder alternatives exist within aMSE (see Conditioning the Operating Model). 

IMPORTANT: By relying primarily on recruitment deviates to match the observed against 
the predicted cpue, and the observed vs the predicted size-composition data, we would be 
ignoring any extra non-fishing related mortality, such as marine heat-wave events or other 
environmentally driven mortality events. But as a first approximation it should be able to 
move each SAU closer to the observed state. 

The format of the recruitment deviates is as follows: 

RECDEV, 58 
CondYears, 6,7,8,9,10,11,12,13 This line is here for convenience 
1963, -1, -1, -1, -1, -1, -1 -1, -1, The -1 values mean ignore recruitment deviates 
1964, -1, -1, -1, -1, -1, -1 -1, -1, The -1 values mean ignore recruitment deviates 
1965, -1, -1, -1, -1, -1, -1 -1, -1, The -1 values mean ignore recruitment deviates 
1966, -1, -1, -1, -1, -1, -1 -1, -1, The -1 values mean ignore recruitment deviates 
… 
… 
1980,1.207,1.097,0.939,1.014,0.643,0.911,0.504,1.197, some SAU +ve some -ve 
1981,1.083,0.140,0.500,1.547,0.591,0.503,0.066,0.645, 
1982,0.922,0.915,1.130,0.994,0.790,0.995,0.807,1.067, 
1983,1.019,0.933,1.129,1.114,0.887,0.923,0.784,1.360, 
… 
… 

If a line, after the year value is >0 then values for the whole line MUST be given, even if they 
are merely set at 1, which implies the recruitment level should be taken off the mean of the 
stock recruitment relationship. 

The values illustrated were derived from simple code that first searches for an optimum 
AvRec value, and then searches, sequentially through each SAU, for an optimum set of 
recruitment deviates between a given range of years. One needs to account for the expected 
time-lag in years between when a cohort might settle and when it then will begin to enter the 
fishery. The values included in the ctrlfiletemplate() function were obtained using sizemod to 
fit each sau’s data to an array of parameters, including recruitment deviates. 
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5.5 The saudataEG.csv File 

This file is identified in the START section of the control file. Like the control file the 
saudataEG.csv file can also start off with some optional descriptive text lines. 

SAU definitions listing Probability density function parameters for each variable 
These are randomly allocated to each population except for the proportion of recruitment, 
which is literally allocated down in the popREC section 

As many of these descriptive lines as required can be included. The start of input that is used 
by the MSE is signaled by the SPATIAL heading (remember use capital letters for the section 
headings where indicated and getting the spelling correct are important). The saudataEG.csv 
file contents are read in by the function readsaudatafile(), and each variable is identified and 
selected by its name (so type carefully or use the datafiletemplate() function to make a start). 
Despite this approach, reading the values is still split into groups that relate to their function. 
First there are lines describing the implied geographical spatial structure being simulated, 
then comes a matrix of properties for each SAU, following on from the PDFs heading. 

Not all the input variables are used to define probability density functions. Thus, each of the 
nsau, saupop, saunames are defined explicitly after deciding on the geographical structure to 
impose. They need to be listed in the order in which they are expected to occur along the 
coast. Each population is a member of a given SAU, and here we are using the Tasmanian 
block number as the SAU index (and the saunames). Each SAU can have a different number 
of populations. These three SPATIAL inputs appear to be duplicates of those in the 
controlEG.csv, and they are, but are used for different purposes. 

SPATIAL 

nsau, 8, number of spatial management units eg 6 or in TAS’s case 8 
saupop, 3, 3, 5, 7, 9, 9, 12, 8, number of populations per SAU in sequence 
saunames, 6, 7, 8, 9, 10, 11, 12, 13, labels for each SAU; not used 

5.5.1 PDFs 

PDFs, 32,  

This line is read in to determine the number of variable values to be read (the rows to the 
matrix). The number of columns of the matrix are defined by the nsau defined above. 

The precision with which this matrix is filled will constitute a large part of any conditioning. 
Approximate and plausible values will produce a generic MSE whereas, tuning the matrix to 
the biological properties of a particular zone, and especially particular SAU, as best one can, 
will generate a much more specific MSE, especially if that is followed up by conditioning the 
resulting modelled stock on historical fishery data. Thus, if one then included historical 
catches and other fishery data the result would be as realistic a modelled representation as 
one could get when using such a complex spatial structure and without an enormous amount 
of data (which no-one has). 

Here we only imply a plausible and generic zone, as can be inferred by the repeated values 
(which will still lead to different values between populations because variability is included 
as each population is generated - variables prefixed s, are all large enough to influence a 
random number). If specific values for a given population are wanted then set the respective 
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variation value to 1e-08. All variables are sampled from a Normal distribution except for the 
average unfished recruitment, which strongly defines the upper productivity of each 
population, and is sampled from a log-normal distribution (see the function definepops()). 

5.5.2 Growth 

The parameters of the Inverse Logistic model describing growth (Haddon et al, 2008; 
Haddon & Mundy, 2016). Alternative growth functions will be implemented in the future, if 
desired, and will be selected in this section. In each case there is the main parameter 
(MaxDL, L50, L50inc, and SigMAx) followed immediately by the variation to be attributed 
to a given population’s value (obtained through sampling from a normal distribution). If exact 
or specific values are wanted for the populations in a given SAU, then set the respective 
variation value to 0. Estimates of MaxDL and L95 (L50inc = L95 - L50) can be obtained for a 
given sau by using sizemod. 

DLMax ,26, 30, 30, 34, 34, 34, 34, 29, maximum growth increment 
sDLMax ,2, 2, 2, 2, 2, 2, 2, 2, variation of MaxDL within each SAU 
L50 ,135.276, 135.276, 135.276, …, …, …, …, …, Length at 50% MaxDL 
sL50 ,2, 2, 2, 2, 2, 2, 2, 2, variation of L50 
L50inc ,39, 39, 39, 39, 39, 39, 39, 39, L95 - L50 = delta =L50inc 
sL50inc ,1.5, 1.5, 1.25, 1.25, 1.25, 1.25, 1.25, 1.25, variation of L50inc 
SigMax ,3.3784, 3.3784, 3.3784, …, …, …, …, …, max var around growth 
sSigMax ,0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, var of SigMax 

 

5.5.3 LML 

It is not impossible that different SAU operate under different LML, this allows for the 
generation of the equilibrium zone to reflect such variation if present. If, however, historical 
catches are available and are used, they are defined along with the LML used in each year 
and those LML are used in the zone definition instead. The entry here is only for situations 
where no historic data are used, but it still needs to be present under all circumstances. 

LML ,127, 127, 127, 127, 127, 127, 127, 127, Initial legal minimum length 

5.5.4 Weight-at-Size 

The weight-at-size relationships for each population are defined using the standard equation: 

𝑊, ൌ 𝑎𝐿
 

which defines the weight of animals in population 𝑝 at length 𝐿. For this we need both the 
𝑎 and 𝑏 parameters. 

It was found in Haddon et al (2013; see pages 208-209) that there was a power relationship 
between the 𝑏 parameter and its corresponding 𝑎 parameter. This was useful but lacked 
any intuitive sense. An examination of weight-at-size relationships within sau (see the 
appendix on _weight-at-size vs_location) found that within sau these relationships mainly 
had very similar values for the `a` parameter with minor variation in the `b` parameter. While 
that variation was low, it nevertheless led to important differences between populations. So 
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low variation is included in the exponent, `b` but only extremely low variation included for 
the `a` parameter. 

Wtb ,3.161963, 3.161963, 3.161963, …, …, …, …, …, weight-at-length exponent 
sWtb ,0.000148, 0.000148, 0.000148, …, …, …, …, var of Wtb 
Wta ,6.4224e-05,5.62e-05, …, …, …, …, …, …, power curve intercept 
sWta ,1e-08, 1e-08, …, …, …, …, …, …, variation of Wta 

 

5.5.5 Natural Mortality 

This is a troublesome variable. Previous work has generally assumed a natural mortality rate 
of about 0.2, but this suggests that most animals would be close to senile by the age of 23 
(only 1 percent would be expected to survive that long). However, very many very large 
animals have been found, despite their growth characteristics implying that to reach such 
sizes would take much longer than 23 years (given the very slow growth rates of large 
animals). This casts doubt on the notion of M = 0.2, which, if traced, stems from some rather 
limited, and potentially flawed (blocking respiratory pores with tags) tagging data from 
decades ago. As with the growth characteristics, tagging may negatively affect survivorship, 
this potentially affecting any early tagging study of natural mortality (biasing it high). Here 
we have selected 0.15 as the mean or base-case against which to compare the rest, but the 
uncertainty means that it would be worthwhile comparing the outcomes of any HS when M = 
c(0.1, 0.125, 0.15, 0.175, and possibly even 0.2). 

Me ,0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, Nat Mort 
sMe ,0.005, 0.005, 0.005, 0.005, …, …, …, …, var of Me 

 

5.5.6 Recruitment 

The average unfished recruitment is a major influence on the productivity of each SAU and 
population. During conditioning it is recommended that this be one of the first variables to 
adjust to set-up each population’s unfished production. At very least it should be possible to 
determine the relative long-term production of each SAU, and this can be used as a guide to 
determine the relative productivity of each SAU, which should then be distributed among its 
constituent populations. If a time-series of GPS data-logger information is available (or 
potentially a series of surveys) this can be used to scale the relative productivity of each 
constituent population within each SAU (this is done in the propREC section of the 
saudataEG.csv file, as described below). The AvRec unfished recruitment (𝑅0) value, in each 
case, is in linear-space for ease of use, but is commonly expressed as log(AvRec) in the 
model. This is defined using steepness as shown in the equations within the zoneCOAST 
section above. Estimates of AvRec for each sau can be obtained by using sizemod. 

AvRec,217500,410000,185000,905000,760000,1440000,1350000,355000,  
sAvRec,0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, R0 variation 
defsteep ,0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, Beverton-Holt steepness 
sdefsteep ,0.0125, 0.0125, 0.0125, 0.0125, …, …, …, …., 
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5.5.7 Emergence 

Emergence has been studied in Tasmania through an examination of the growth of encrusting 
animals and algae on the animal’s shells. The cover by algae (even encrusting algae) being 
taken as evidence of emergence (exposure to light). This only becomes influential if the 
emergence curve overlaps with the selectivity curve, which may happen when the LML is 
low. If no emergence data is present, then just set values so that the emergence curve always 
runs at smaller sizes than the selectivity curves (see later). These values below are mostly 
invented (for now; from very limited data) but would influence availability when the LML 
was down at 127mm. 

L50C ,126.4222, 126.4222, 126.4222, …, … , length at 50% emergent 
sL50C ,0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 
deltaC ,10, 10, 10, 10, 10, 10, 10, 10, length at 95% - 50% emergent 
sdeltaC ,0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 

 

5.5.8 CPUE 

Earlier versions of aMSE, assumed linearity between cpue and exploitable biomass and a 
maximum cpue was used to designate or scale the predicted cpue to match nominal observed 
cpue levels. Now, however, the option (the very much preferred option) is to assume hyper-
stability of cpue (a non-linear relationship between cpue and exploitable biomass) and this 
has made the next two parameters redundant. They are retained however, as the maximum 
cpue that would be obtained in an unfished population can be stored in this variable once it is 
calculated. The values contained in this variable are no longer used but nsau values are 
required in each row in all cases. The variation can be set to zero (again, no longer used). 

MaxCEpars, 0.4,0.425,0.45,0.475,0.45,0.45,0.375,0.3, max cpue t-hr 
sMaxCEpars, 0, 0, 0, 0, 0, 0, 0, 0, 

 

5.5.9 Selectivity 

Even though there is an LML, the precision with which abalone are taken with respect to the 
LML is not always perfect with some legal sized animals being left behind and occasionally 
some just sub-legal being taken (though these observations may be due to measuring error). 
Here we use a simple addition to the selectivity ogive used for each population. The selL95p 
parameter can be estimated within sizemod, and often has values between 4 - 6. The 
selectivity curves used in the modelling (which are a combination of selectivity and 
availability) are illustrated in the Fishery tab of the MSE output. 

selL50p ,0 ,0, 0, 0, 0, 0, 0, 0, L50 of selectivity, 0 = no bias 
selL95p ,5, 5, 5, 5, 5, 5, 5, 5, L95 of selectivity 

 

5.5.10 Size-at-Maturity 

It was found in Haddon et al (2013; see pages 210-211) that there were relationships between 
the two parameters used to define the logistic maturity-at-size relationships for different 
populations. A fixed parameter value of -16 for the 𝑎 parameter led to a range of plausible 
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values for the 𝑏 parameter. A better alternative is to use size-at-maturity data from each sau 
if it is available. If available it can be analysed using the biology package (the values 
included in the file created by the datafiletemplate() function derive from maturity samples 
analysed in that way. 

SaMa, -22.3,-22.3,-22.2,-22.1,-24.0,-15.2,-21.2,-22.1, maturity logistic a par 
L50Mat, 98.8,98.8,116.3,116.7,122.9, 112.2,121.1,105.8, L50 for maturity b = -1/L50 
sL50Mat, 3, 3, 3, 3, 3, 3, 3, 3, 

 

5.5.11 cpue Hyper-stability parameter 

The lambda parameter in the equation 

𝐼௬ ൌ 𝑞𝑒𝑠𝑡 ൈ 𝐵ா
ఒ 

can define a linear relationship between cpue and exploitable biomass only when lambda or 𝜆 
has a value of 1.0. If 𝜆 ൏ 1.0, then that relationship curves down to generate hyper-stable 
cpue values. Hyper-stability of, at least Tasmanian blacklip abalone, has now been 
demonstrated using the GPS logger data, and so now, in Tasmania, the base-case being used 
assumes a 𝜆 ൌ 0.75. No variation is currently included in that parameter. The qest 
parameter (estimated within sizemod, although it could be approximated by trial and error) is 
designed to scale the exploitable biomass (raised to the exponent 𝜆) so that the resulting cpue 
matches the observed nominal scale. If 𝜆 ൌ 0.5 this would be equivalent to using the 
square-root of the exploitable biomass, which is obviously a smaller number than the 
original, hence the scaling factor qest needs to adjust for that appropriately for each SAU. 

lambda, 0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75 , 
qest, 4.75, 2.25, 5.17, 1.63, 1.27, 0.77, 0.61, 1.45, 

 

5.6 propREC 

The propREC section provides details of the distribution of the recruitment levels across the 
populations within each SAU. The three columns of values are the SAU, the population index, 
and its expected proportion of its respective SAU recruitment each year. These values need to 
be set manually during the conditioning and can be varied until the dynamics approximate the 
desired dynamics. In Tasmania, once again the GPS logger data were able to be used to 
identify within each sau, areas of persistent productivity, which were equated to the 
populations. These varied in area and in average yield, but provided a more objective way to 
define the population structure within each sau than simply ascribing different numbers of 
populations and proportions of recruitment. 

SAU,pop,propR 
6, 1, 0.742, in SAU 6 about 1/6 of recruitment goes to pop 1 
6, 2, 0.094, in SAU 6 most recruitment goes to pop2 
6, 3, 0.163, in SAU 6 almost no recruitment goes to pop3 
7, 4, 0.203, in SAU 7 a more even distribution of recruitment occurs 
7, 5, 0.59 
7, 6, 0.207 
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8, 7, 0.041 
… 
… 
12, 48, 0.03 
13, 49, 0.121 
13, 50, 0.084 
13, 51, 0.124, in SAU 13 there are 8 populations with variable levels 
13, 52, 0.164 
13, 53, 0.215 
13, 54, 0.126 
13, 55, 0.062 
13, 56, 0.104 

 

That completes the current structures and formats of the control.csv, saudata.csv, and size-
composition data files. 
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6. Conditioning the MSE with the sizemod Package 

6.1 Introduction 

A Management Strategy Evaluation can attempt to simulate a real-world fishery. 
Conditioning the operating model involves modelling the properties of the fished stock so 
that the dynamic behaviour of the operating model mimics, or is at least has strong 
similarities to, the observed dynamics of the real-world fishery. Where operating models 
assume no or only simple spatial structure, it is sometimes possible to use standard stock 
assessment modelling methods to fit the operating model to available data from the fishery. 
This would ensure that estimates of productivity and other aspects of how the stock responds 
to fishing pressure are as good as the available data permits. Fitting the operating model to 
available data would also provide estimates of uncertainty around key parameters, which 
could then be included in the MSE simulations to provide a relatively realistic reflection of 
how the stock could respond when using alternative harvest strategies to provide management 
advice through time. 

In Australia (and elsewhere) abalone stocks tend to be made up of meta-populations with 
notoriously complex spatially structures, with each component population being mostly self-
sustaining through localized recruitment processes meaning limited larval movement and 
with very limited to no effective movement of settled animals. One outcome of such spatial 
structure is that most abalone populations can be considered data-poor (Haddon et al., 2005; 
Orensanz et al., 2005; Parma et al., 2003). Parma et al. (2003) and Orensanz et al. (2005) 
discuss the notion of S-fisheries, which are generally spatially structured (meaning patchy 
with heterogeneous biological properties), often targeting species of lower economic 
importance, and potentially subject to serial depletion. Wilson et al, (2013) added to this list 
of properties, by referring to the common mismatch between scale of fishing, scale of 
reporting, and scale of management (lots of S’s, hence S-fisheries). Most importantly, for this 
discussion, such fisheries do not conform to the assumptions of the classical dynamic-pool 
notion of fish stocks. For a fishery to be a dynamic pool then some population event (be it a 
fishing event, a recruitment event, etc) will affect the whole stock within a relatively short 
period (often, at most, within a year). This requires there to be relatively high levels of 
mobility and mixing of individuals, or at least high levels of larval movement. Such an 
assumption may well be valid in scale-fisheries but is far less often true in fisheries for 
sessile, sub-tidal, hand-gathered species. Abalone cannot be considered to be of lower 
economic value but closely meet every other criterion for S-fisheries. 

Given the complex spatial structured exhibited by Australian abalone fisheries it would be 
invalid to attempt a zone-wide assessment of a fishery’s dynamics and expect such a thing to 
reflect the observed dynamics at smaller geographical scales. At best, it might be possible to 
conduct an assessment at the smallest spatial scale at which data from the fishery has been 
reliably collected. In the case of the Tasmanian west coast, that scale is that the level of 
statistical block (= sau or SAU). 
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Figure 6.1: A sketch map of the statistical blocks or sau in the current Tasmanian Western Quota Zone, which are included 
in the Tasmanian MSE. Block or SAU numbers are as labelled. sau6 and sau13 have a ‘W’ postfix because, surprisingly, 
they also have subblocks in other zones. 

 

Generally, high value species around the world are assessed using relatively complex stock 
assessment models with statistical integrated assessment models becoming more common 
(Maunder and Punt, 2013; Punt et al., 2013). High value species such as abalone are not often 
considered to be data-poor species, but there are many difficulties in collecting representative 
data from such a patchily distributed, highly variable, sub-tidal species. In the case of 
Tasmanian blacklip abalone (Haliotis rubra) data collection with respect to the biological 
properties of size-at-maturity, growth, and size-structure, has continued for decades. 
However, the extent and complexity of the Tasmanian coastline means that many areas and 
depths have no such biological samples at all. Spatial complexity and heterogeneity becomes 
a problem when attempting to condition the aMSE operating model to mimic the dynamics 
of an Australian abalone stock (see the appendix on Maturity vs Location for an example of 
small spatial scale biological heterogeneity). 

6.1.1 What Models are Possible? 

Surplus production models (Prager, 1994; Haddon, 2011, 2021) have been used with some 
success with catches and standardized CPUE data from some Tasmanian abalone statistical 
blocks. The SAU on the west coast with the most data (SAU 9 - 12) provided relatively 
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convincing model fits to the available data. The sparser data from SAU 6 - 8 generated less 
stable model fits, mainly because catches, and therefore number of records, were relatively 
low and the limited data were therefore more variable. The original idea for conditioning the 
Tasmanian MSE was to use such models to estimate the productivity of each block/SAU and 
continue improving the fit to observations from there. One problem with this strategy is that 
simple surplus production models assume that recruitment is also a simple and deterministic 
process. Unfortunately for this strategy, in Tasmania, abalone recruitment is sometimes 
extensive and far from average across whole quota zones and at other times appears patchy 
and variable in intensity. In the operating model, annual recruitment is modelled using a 
Beverton-Holt stock recruitment curve. Exploratory attempts to impose trial and error 
recruitment deviations from the modelled averages into the surplus production models, 
demonstrated that recruitment deviates were necessary for the predicted CPUE and predicted 
size-composition of the catch to approximate the observed data. However, attempting to 
introduce such artificial recruitment deviates was clumsy at best and often led to implausible 
model inputs at worst. Another disadvantage of using surplus production models is that they 
ignore what is known about the biological properties of the different areas (differing growth, 
etc.), and they cannot use any of the size-composition of catch data, which are now regularly 
collected, when fitting the model. These disadvantages are a problem because together they 
mean such models cannot provide strongly defensible estimates of any recruitment deviates 
that may have occurred. 

Despite the serious issue regarding how representative of the multiple populations expected 
in any one SAU standard sampling can be, the use of a size-based integrated assessment 
model was explored to determine whether it could provide more plausible estimates of 
productivity and, more especially, of the expected recruitment dynamics during the known 
history of the fishery. An R package, called sizemod has been and continues to be developed 
to simplify the application of such a model; it is documented elsewhere and within the 
sizemod package. Here we will focus on different ways of using it and what the modelling 
results imply for conditioning aMSE’s operating model. 

 

6.2 Using sizemod as a Size-Structured Production Model 

The R package sizemod contains a number of data files that allow for the illustration of how 
to use the software. One data set, fish, contains the fishery data, another, sizecomp, contains 
observed size-composition data from catches across a number of years, and another setup 
contains other details required to get a model run to work (see sizemod documentation, 
which also contains a formal description of model structure.). 

require(sizemod) 
data(fish) 
data(sizecomp) 
fiscomp <‐ NULL 
omega=c(1,1,0,0) # include data streams for cpue and size‐composition, no FIS  
data(setup) 
ctrl <‐ setup$ctrl 
glb <‐ setup$glb 
constants <‐ setup$constants 
glb$maxage=50 
glb$phase=1 
glb$lambda <‐ 0.75 # CPUE and Exploitable biomass relationship now non‐linear 
# when first fitting SA model set glb$sigce = 0, so between year CPUE 
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if (glb$sigce == 0) {   # variability is first approximated 
  glb$sigce <‐ getrmse(fish,invar="cpue",inyr="year",natlog=TRUE)$rmse 
} 
biol <‐ makebiology(glb$midpts,constants) # define biological properties 
kable(biol[50:59,],digits=c(3,3,3,3)) 

Table 6.1: Proportion mature, weight-at-length, proportion emerged, and maturity x weight at length for length classes 100 - 
118 mm. The full range of sizes is 2 - 210 mm in Tasmania. 

 mature WtL emergent MatWt 

100 0.024 131.371 0.000 3.102 

102 0.033 139.920 0.001 4.648 

104 0.047 148.843 0.001 6.928 

106 0.065 158.149 0.002 10.257 

108 0.090 167.845 0.004 15.056 

110 0.123 177.942 0.008 21.853 

112 0.166 188.448 0.014 31.265 

114 0.220 199.372 0.025 43.929 

116 0.286 210.722 0.044 60.369 

118 0.363 222.508 0.077 80.825 
 

 

 

Figure 6.2: Fishery history in SAU 12 in the western zone in Tasmania. Catches in tonnes, CPUE in kg/hr. 

 

The catch time-series exhibits some remarkable variation from year to year (see Figure 6.2). 
The 100t increase between 1999 and 2001 in SAU12 was a response to the introduction of 
quota zones, which allocated a TAC to the west of Tasmania with the aim of distributing dive 
effort more widely around the State. The CPUE time-series only starts in 1992 because prior 
to that the data are an unknown mixture of records by month, day, individual diver, and 
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collections of divers. A change in the reporting requirements in 1992 (daily by individual 
diver), and associated changes to the database helped solve those issues. 

The size-composition data used was generally collected as samples of at least 100 individual 
measurements from individual landings by divers. Hence the early observations were often 
the outcome of sampling only very few landings. When combined with the 2mm size-classes 
in the assessment and operating models, this explains why the early data exhibits such 
spikiness. One great value of the size-composition data is that when it is compared with the 
theoretical unfished size-distribution of catches it provides a measure of the level of depletion 
imposed upon the populations within SAU 12. The size-composition data remains 
surprisingly noisy. For example, in 2019, the catches appear to be biased constistently high 
off the LML by about 5mm. Whether this was because divers had been instructed to try to 
ignore smaller animals for marketing reasons, or some other reason, is unknown. It suggests 
that time-blocking of any selectivity parameters might lead to improvements in model fit, 
although, once again, the question of whether the data are representative of an area as large as 
an SAU remains problematic (see Figure 6.1); the coastline of sau12 extends across about 0.4 
of a degree of latitude and 0.5 degree of longitude. 

 

 

Figure 6.3: The observed size-composition of catches sampled from 1990 - 2020, with 11 missing years. The sample sizes 
increased from 2007 onwards. The vertical blue lines are the LML in each year; note the increase in 2020. 
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6.2.1 The Initial Parameters 

The model is currently set up to estimate about 35 parameters (depending on how many 
recruitment deviates are included), all of which are log-transformed to help stabilize the 
estimation process. These include the unfished recruitment (LnR0), the MaxDL of the inverse 
logistic growth curve used (Haddon et al, 2008), the L95 of the growth curve, the catchability 
(implemented to allow for a non-linear relationship between CPUE and exploitable biomass = 
hyperstability), and the difference between the 50% and 95% selectivity curve. In addition to 
these five primary parameters there are 30 recruitment deviates from 1985 - 2014. The 
number of deviates estimated depends upon the number of years of informative size-
composition data there are available. Preliminary values for these are put into the model 
using a 35 x 2 array, with the second column containing a zero if the parameter is to be held 
constant and any number greater than zero (we use 1) if it is to be estimated by the model. By 
setting all the recruitment deviates to zero (back-transformed = 1.0), and setting the model 
not to estimate their value, it is possible to run sizemod as a size-structured surplus 
production model. 

 

Difference in equilibrium population Numbers‐at‐size > 10   

Difference in equilibrium population Numbers‐at‐size > 10   

The initial parameters making up the pindat were obtained partly by examining the outcome 
of tagging estimates of growth in the area, and partly (mainly) by trial and error until the 
predicted CPUE at least approximated the shape of the observed CPUE (Figure 6.4). 

 

 

Figure 6.4: Predicted CPUE (red, 1964 - 2020) relative to standardized observed CPUE (black, 1992 - 2020) when 
modelled using the initial parameter values before fitting the model using maximum likelihood. 

 

6.2.2 The 5-Parameter Model Fit 

By searching manually for initial parameters that provide an approximate solution, as 
suggested by the two curves approaching each other (Figure 6.4), then formally fitting the 
model to the available data becomes more efficient (see appendix for all the code used). 
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starttime <‐ Sys.time()  
  outmod <‐ fitlbm(pindat,negLLP,funk=dynamics,biol=biol,glb=glb,fish=fish, 
                   constants=constants,omega=omega,sizecomp=sizecomp, 
                   fiscomp=fiscomp,both=TRUE,tol=1e‐06,initH=0) 

initial  value 2565.279326  

iter  10 value 1591.668939 
iter  20 value 1527.720011 
final  value 1527.056570  
converged 
  0:     1527.0566:  14.9410  3.16484  5.13042 ‐1.23772 ‐5.06285 
Difference in equilibrium population Numbers‐at‐size > 10   

  fitpar <‐ outmod$ans2$par 
  optpar <‐ allpin 
  optpar[modin$notfix] <‐ fitpar 
  neglogL <‐ 

negLLP(pars=fitpar,initpar=optpar,funk=dynamics,biol=biol,glb=glb, 
                    fish=fish,constants=constants,notfixed=modin$notfix, 
                    omega=omega,finalcomp=sizecomp,fiscomp=fiscomp,full=TRUE) 

Difference in equilibrium population Numbers‐at‐size > 10   

  likelihoods <‐ cbind(oldlogL,neglogL,(abs(oldlogL ‐ neglogL))) 
  print(round(likelihoods,4)) 

              oldlogL     neglogL           
LLce        1163.1697     67.6058 1095.5638 
compL       1401.0268   1457.8080   56.7812 
penaltyR       0.0000      0.0000    0.0000 
sigmaCE        0.0337      0.0337    0.0000 
wtsc           0.0070      0.0070    0.0000 
penLnR0        0.3574      0.9994    0.6420 
penDL          0.0000      0.0370    0.0370 
pencatch       0.0000      0.0000    0.0000 
penH           0.7255      0.6053    0.1202 
penaltyCE      0.0000      0.0000    0.0000 
totalL      2565.2793   1527.0556 1038.2238 
sad         1020.8780    288.1041  732.7739 
sadce       1014.4832    283.4456  731.0376 
sadcomp        6.3948      4.6585    1.7363 
sigmaR         0.5000      0.5000    0.0000 
lambda         0.7500      0.7500    0.0000 
steep          0.7000      0.7000    0.0000 
M              0.1500      0.1500    0.0000 
LLsc      200720.4761 208855.3306 8134.8546 
LLfis          0.0000      0.0000    0.0000 
LLfissc        0.0000      0.0000    0.0000 
wtfis          0.0070      0.0070    0.0000 
fiscompL       0.0000      0.0000    0.0000 
limLnR0       16.0000     16.0000    0.0000 
maxDL         32.0000     32.0000    0.0000 
minDL         23.0000     23.0000    0.0000 
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  pindat[modin$notfix,"param"] <‐ fitpar 
endtime <‐ Sys.time() 
print(endtime ‐ starttime) 

Time difference of 2.026953 secs 

 

With only five parameters the model fit is generally very quick. Later, when we fit 
recruitment residuals the solution can take more time to be found. The improvement in model 
fit between the start and the 5-parameter fit is apparent both in the reduced total negative log-
likelihood from 6462 to 2701, but in the reductions to both the log-likelihoods for CPUE 
(LLce) and the composition data (compL). When this model fit is plotted in full the 
improvement in fit to CPUE is also visible, although overall it remains poor, appearing to be 
a one-way decline. 

 

Difference in equilibrium population Numbers‐at‐size > 10   

 

Figure 6.5: Summary plots for the fit to the model when only fitting the first five parameters and treating sizemod as a size-
structured surplus-production model. 
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While the model fit will automatically provide an estimate of current depletion for both the 
mature biomass (important for recruitment dynamics) and exploitable biomass (important for 
the estimate of CPUE), it should be noted that the final predicted CPUE is well above the 
observed CPUE (Figure 6.5). The trends in the residuals also indicate that despite the 
improved model fit there remain some significant biases that demonstrate a serious model 
misspecification. The model has done its best to fit to the data, but the assumption of constant 
recruitment (bottom right panel) does not provide for sufficient flexibility for the modelled 
dynamics to be able to fit closely to the data. 

The fit to the size-composition data also has issues, although it is remarkably good in some 
years, in particular 2012, 2013, 2020 (Figure 6.6). Surprisingly, even the earlier years from 
1994 to 2006, where sample sizes were relatively small, the fits that were produced are 
clearly approximating the distributions despite the noisiness of the data. Notice that some 
years, when the data were first considered (2014, 2015, and 2019), appear unusual in that the 
rising edge of the commercial data is right shifted away from the LML. 

 

 

Figure 6.6: Using sizemod as a size-structured surplus-production model generates plausible model fits to some of the year 
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of size-composition data. 

  

Importantly, the descending edge of the observed and fitted size-composition distribution, 
when compared to the theoretical unfished distribution contributes evidence towards 
estimating the depletion in each year (assuming selectivity is not dome-shaped; the model 
implemented logistic selectivity). 

 

 

Figure 6.7: A comparison of all years of observed size-composition of catch data with the predicted unfished equilibrium 
size-distribution of the population. The left-ward shift of the mode of the observed data away from the mode of the unfished 
population is indicative of depletion. The lines have different heights because the proportions across each curve all sum to 
equal 1.0, ‘obs-nas’ is the observed numbers-at-size. 

  



105 
 

6.3 The 35-Parameter Model Including Recruitment Deviates 

To allow the estimation of recruitment deviates it is only necessary to alter the ‘phase’ 
column in pindat from zero to 1. This could be done in sub-groups gradually, if problems 
arose during the fitting process. Alternatively, if the model has problems converging on a 
biologically plausible solutions then one can manually adjust some of the recruitment 
deviates time-lagged prior to increases in CPUE to improve the initial fit of predicted CPUE 
to that observed. This approach is sometimes needed to aid in obtaining a final plausible 
model fit. However, for data from statistical block 12, model fitting was able to proceed 
directly to estimating 35 parameters. With this many parameters, each iteration in the 
minimization takes longer, though now that Rcpp routines have been included to speed the 
calculations the whole process is much faster than the original R only code. 

pindat[6:35,"phase"] <‐ 1  
pindat[6:35,"param"] <‐ 0.1 
pindat[1:5,"param"] <‐ c(14.25,3.29,5.2,‐0.46,1.36)  

Now, when the model is refit to the data it will alter all those zeros to adjust the recruitment 
in each of those years (1985 - 2014) and thereby improve the fit to the CPUE and size-
composition data. 

modin <‐ getpin(pindat) 
pin <‐ modin$pin 
notfix <‐ modin$notfix  # in this case all parameters are not fixed 
allpin <‐ modin$allpin 
allpin[notfix] <‐ pin 
oldlogL <‐ negLLP(pars=pin,funk=dynamics,initpar=modin$allpin, 
                  biol=biol,glb=glb,fish=fish,constants=constants, 
                  notfixed=modin$notfix,omega=omega,finalcomp=sizecomp, 
                  fiscomp=fiscomp,full=TRUE) 

Difference in equilibrium population Numbers‐at‐size > 10   

starttime <‐ Sys.time()  
  outmod2 <‐ fitlbm(pindat,negLLP,funk=dynamics,biol=biol,glb=glb,fish=fish, 
                    constants=constants,omega=omega,sizecomp=sizecomp, 
                    fiscomp=fiscomp,both=TRUE) 

initial  value 2845.113909  

iter  10 value 1407.251819 
iter  20 value 1354.454309 
iter  30 value 1333.216319 
iter  40 value 1328.034588 
iter  50 value 1327.222530 
iter  60 value 1326.524064 
iter  70 value 1325.738847 
iter  80 value 1325.237478 
iter  90 value 1324.613119 
iter 100 value 1323.847725 
iter 110 value 1323.340747 
iter 120 value 1323.224617 
iter 130 value 1323.127476 
iter 140 value 1323.085858 
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iter 150 value 1323.082623 
iter 150 value 1323.082623 
iter 150 value 1323.082622 
final  value 1323.082622  
converged 
  0:     1323.0826:  14.0987  3.33405  5.18416 ‐0.433344  1.40928 
0.0578526 0.129311 0.227778 ‐0.254128 0.773467 0.805066 0.445180 0.200832 
0.423153 0.533578 0.0481762 ‐0.140197 0.435316 ‐1.27799 0.513452 0.395607 
0.363445 0.116582 0.819583 0.0648155 0.595222 0.117573 0.0616644 0.0915990 
‐0.267316 0.796522 0.328776 0.501531 ‐1.10073 0.890477 
 25:     1323.0799:  14.0982  3.33385  5.18448 ‐0.433050  1.41080 
0.0593352 0.132020 0.233038 ‐0.250369 0.770941 0.808362 0.444856 0.202573 
0.422683 0.533153 0.0479880 ‐0.140003 0.436237 ‐1.27846 0.515117 0.395481 
0.363972 0.118817 0.820425 0.0653228 0.595210 0.116981 0.0615609 0.0929899 
‐0.265075 0.795719 0.332357 0.500808 ‐1.09839 0.890727 
 50:     1323.0613:  14.0769  3.33441  5.18561 ‐0.425872  1.41083 0.252045 
0.267807 0.233927 ‐0.190501 0.793396 0.841358 0.445018 0.234640 0.426804 
0.551504 0.0671789 ‐0.124130 0.455780 ‐1.28758 0.533297 0.410752 0.376703 
0.139459 0.833419 0.0852341 0.608918 0.135467 0.0779464 0.107331 ‐0.236060 
0.802577 0.364037 0.500774 ‐0.989233 0.894203 
Difference in equilibrium population Numbers‐at‐size > 10   

  fitpar <‐ outmod2$ans2$par 
  optpar2 <‐ fitpar 
  neglogL <‐ negLLP(pars=fitpar,initpar=optpar2,funk=dynamics,biol=biol, 
                    glb=glb,fish=fish,constants=constants, 
                    notfixed=modin$notfix,omega=omega,finalcomp=sizecomp, 
                    fiscomp=fiscomp,full=TRUE) 

Difference in equilibrium population Numbers‐at‐size > 10   

  likelihoods <‐ cbind(oldlogL,neglogL,(abs(oldlogL ‐ neglogL))) 
  print(round(likelihoods[1:12,],4)) 

            oldlogL   neglogL           
LLce      1427.5735  ‐68.0738 1495.6473 
compL     1411.6218 1390.3194   21.3024 
penaltyR     0.0000    0.0000    0.0000 
sigmaCE      0.0337    0.0337    0.0000 
wtsc         0.0070    0.0070    0.0000 
penLnR0      0.2821    0.0937    0.1884 
penDL        0.0000    0.0000    0.0000 
pencatch     0.0000    0.0000    0.0000 
penH         5.6366    0.7218    4.9148 
penaltyCE    0.0000    0.0000    0.0000 
totalL    2845.1139 1323.0610 1522.0529 
sad        659.8509   34.2540  625.5969 

  pindat[modin$notfix,"param"] <‐ fitpar 
endtime <‐ Sys.time() 
print(endtime ‐ starttime) 

Time difference of 50.60049 secs 
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The negative log-likelihoods have improved in that the LLce for CPUE has decreased from 
67.606 in the 5-parameter fit to -68.074 and the compL for the size-composition data has 
decreased from 1458 down to 1390. When the data streams are completely consistent with 
each other and if the recruitment penalty has been omitted, the minimizer would have kept 
working until the fit to the CPUE and size-composition can be as perfect as possible. Not 
surprisingly, the resulting dynamics are rather different from that produced by the size-
structured surplus-production model version. Other details of the model fit, such as the 
various penalties and limits are explained in the documentation to sizemod. sizemod includes 
a bias-ramp on the recruitment deviates, uses the Francis (2013) weighting on the cpue index 
of relative abundance, and iterative re-weighting of the relative weight given to the size-
composition data. Once again, these details are described in detail and explained in 
sizemod’s documentation; using the built-in data sets these details have already been 
attended to in the example. 

Difference in equilibrium population Numbers‐at‐size > 10   

 

Figure 6.8: Summary plots for the fit to the full model fitting all 35 parameters. The fit to the cpue appears perfect though 
the residual plot demonstrates that differences are still present. 
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Figure 6.9: Fitted CPUE from the 5-parameter size-based surplus-production version, and the full model compared. Note 
the greater depletion level implied by the full model. 

 

Comparing the model fits to the size-composition data (Figure 6.10) illustrates that the 
differences are more subtle than with the CPUE. Nevertheless, clear improvements are 
exhibited by the modified expected numbers-at-size in the catch. There are numerous 
improvements in the fits to the earlier noisy years of data, whereas in the years with larger 
samples the improvements are seemingly negligible or more subtle. However, for example, in 
the 2011 data the fit to the descending limb of the distribution is a clear improvement, as is 
the increased height of the rising limb. 
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Figure 6.10: Comparison of the size-composition of catch data fitted to the 5-parameter surplus-production version (red 
line), and the 35-parameter model (blue line). 

 

6.3.1 Non-Linearity of CPUE 

The situation modelled in this scenario used a 𝜆 ൌ 0.75. This may be understood by 
examining the following equation: 

𝐼௧ ൌ 𝑞𝐵௧
ఒ  ሺ6.1ሻ 

where 𝐼௧  is the predicted CPUE in year 𝑡, 𝑞 is the catchability, 𝐵௧ is the exploitable biomass 
in year 𝑡, and 𝜆 is a parameter that can alter the relationship between CPUE and exploitable 
biomass. In most stock assessments, 𝜆 ൌ 1 is assumed, which asserts a linear relationship. 
By using 𝜆 ൌ 0.75 the relationship between curvi-linear, which when illustrated clarifies 
the implications of the equation (Equation 6.1). 
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Figure 6.11: The predicted relationship between CPUE and exploitable biomass when lambda = 0.75. The black line 
reflects how it would look if lambda = 1.0. Where the red line appears solid it reflects the range over which observed CPUE 
varies from 1992 - 2020, where it is dashed reflected where there is no usable CPUE data. 

 

Note that the maximum CPUE predicted when 𝜆 ൌ 0.75 is 100kg/hr lower than if a linear 
relationship was used. This value appeared to divers to be more realistic when the fishery first 
started, as, at that time, handling time would have been much greater, and the risk of 
disturbing other abalone when removing one would mean many would lock down leading to 
damage if removal were attempted. 

6.4 Initial Discussion 

A classical, purely biomass based surplus production model can fit the abalone data 
remarkably well (Haddon, 2011, 2021), however, it only provides estimates of productivity 
and no information on the size-composition of the catch or the growth parameters. It also 
turns out to be relatively unstable for some of the statistical blocks and is extremely sensitive 
to variation in its parameters, especially the r parameter. The 5-parameter size-structured 
surplus production model has at least three advantages over the classical biomass-dynamic 
model: 

1) by including the available size-composition data it can provide information concerning 
selectivity and growth as well as fishing mortality and final depletion (it can also 
inform about recruitment deviations but not in the 5-parameter model), 

2) it can more easily model the dynamics that include the full history of catches, and 

3) it is more stable when implementing non-linear relationships between the CPUE and 
exploitable biomass. Despite these advantages the observed fit to the CPUE data does 
not appear as good as that in the biomass-based surplus production model. 

On the other hand, the 5-parameter model is also being fitted to the size-composition data so 
the model fit ends as a compromise between fitting the CPUE data and the size-composition 
data. 
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In its turn, the full 35-parameter model has an important advantage over the size-structured 
surplus-production model in that it can directly estimate the recruitment residuals required to 
adjust the model fits to both the CPUE (Figure 6.9) and the size-composition data 
(Figure 6.10). 

Ignoring the recruitment deviates, the initial five parameter estimates also differ between the 
5-parameter and the 35-parameter models: 

 

Table 6.2: Comparison of the five main parameters when fitting the size-based model. 

 5-param 35-param 

LnR0 3081586 1327381 

MaxDL 23.685 28.052 

L95 169.088 178.423 

qest 0.2900 0.6483 

seldelta 0.006 4.093 
 

 

Much of the variation in CPUE is accounted for by the implementation of recruitment 
deviates in the 35-parameter model. Hence the differences between parameter values appear 
relatively large as they reflect differences in how productivity is expressed (more due to 
growth and less due to the average unfished recruitment in the 35-parameter model). Such 
changes were required to account for the changed dynamics when recruitment deviates were 
included. In fact, given these are numerical solutions, it is possible, if the initial parameter 
values are varied, to obtain essentially identical final model fits where the total likelihood 
differs at the second or third decimal place (of the order of a 10,000th of a percent 
difference). It is the case that, given the highly variable size-composition data and the highly 
variable catch data from year to year, a good deal of uncertainty can be expressed in the 
model outputs. 

There are also some strong assumptions included in the assessment that are associated with 
the constant values given to some important parameters. These strong assumptions include 
that the natural mortality = 0.15, that the steepness of the Beverton-Holt stock recruitment 
relationship was 0.7, and that the lambda parameter, describing the non-linearity between 
CPUE and exploitable biomass, was 0.75. These values were fixed because for abalone they 
remain unknown or, at best, estimated for very small samples from few populations. Varying 
these parameters does not affect the model fit very much but does alter the implied unfished 
CPUE. In summary, the mathematical optimum model fit is different from the optimum 
biologically plausible model fit (initial catch rates staying within plausible values). The three 
assumed values appear to provide for the best compromise between optimizing both the 
statistical fit and the most biologically plausible set of implied population dynamics. 

It has been demonstrated that it is possible, for a statistical block in Tasmania, to use the size-
structured integrated assessment model to estimate the block’s productivity, the selectivity 
characteristics, the growth characteristics, and a series of recruitment deviates used to help 
describe the history of dynamics for which data are available. The uncertainty over what 
values to attribute to natural morality (𝑀), recruitment steepness (ℎ), and the non-linearity 
parameter (𝜆) remains a problem. Nevertheless, the use of the size-based integrated 
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assessment to characterize the dynamics within each SAU is a great improvement over the 
simpler surplus production models. 

6.5 Final Adjustments once in aMSE 

After transferring the parameters from the sizemod estimates into each SAU within the aMSE 
operating model further adjustments are required to the AvRec and recruitment deviates to 
optimize the fits between the predicted CPUE at the SAU level and the observed standardized 
CPUE as well as optimizing the fits between the predicted size-composition of catch and 
those observed. This is done within aMSE using the two functions adjustavrec() and 
optimizerecdevs() (see their individual help pages within aMSE for their arguments and the 
syntax for how to use them. 

The differences between the predicted MSY and AvRec for sizemod and aMSE is such that 
for each SAU in the Tasmanian western zone the MSY in aMSE is about 9.5% less than the 
sizemod estimate for each SAU, and the AvRec is about 3.8% larger in aMSE, although that 
relationship is much more variable between SAU. These differences between the sizemod 
and the aMSE values are a result of the dynamics in aMSE being split between each SAU’s 
populations rather than a single dynamic-pool within each SAU and the scale of the 
differences alters with the number of populations used within an SAU. 
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7. MSE Operating Model Structure 

7.1 Model Dynamics 

The operating model generates the population dynamics for a simulated abalone zone by 
following the numbers-at-size through time of each of the component populations within each 
of the sau. It does this by including how each is affected by natural mortality, somatic 
growth, fishing mortality, and recruitment. The model developed in Haddon et al. (2013) and 
Haddon and Helidoniotis (2013), and further developed in Haddon & Mundy (2016), used 
separate vectors of numbers-at-size to describe the cryptic 𝑁௧

  and emergent 𝑁௧ா  components 
of each population. While this can be considered as a more realistic representation of nature 
further testing demonstrated it was relatively inefficient. Here the model is somewhat 
simplified through the cryptic and emergent components of the population being contained in 
the single vector 𝑁௧, where 𝑁௧ is assumed to be the numbers-at-size (shell length in mm) at 
the start of each year 𝑡. This simplifies the equations and helps speed the calculations 
although with this approach the effect of emergence needs to be included explicitly in some 
of the equations describing the dynamics (see the Selectivity section below). 

Being based upon difference equations, the model structure adopted to describe the assumed 
annual dynamics, begins at the start of each year and involves a number of steps: 1) half of 
the survivorship from natural mortality being applied first, 20 this is followed by individual 
growth, 3) then survivorship from fishing mortality (if fishing occurs), 4) followed by the 
remaining survivorship from natural mortality, 5) finally, each population 𝑝, will give rise to 
𝑅 recruits in year 𝑡, and if any larval dispersal occurs (described by the movement matrix 

Phi, 𝚽), would lead to the re-distribution of a small proportion of those recruits among the 
populations (Miller et al, 2009), and they are then added to the first size class of each 
population vector, 𝑝, at the end of year 𝑡, 𝐍𝐩,𝐭, which is equivalent to be ing the start of hte 

following year. If natural mortality is implemented as half natural mortality, that is 𝑆 ൌ
𝑒ିெ/ଶ, twice a year, with other dynamics between the natural mortality events then the 
dynamics for the numbers-at-size can be represented in matrix notation (which is read right to 
left) as: 

𝐍𝐩𝐭ା𝟏 ൌ 𝚽𝐑𝐩  𝑆𝐀𝐩𝐆𝐩𝑆𝐍𝐩𝐭  ሺ7.1ሻ 

where 𝑆 is the survivorship of population 𝑝 following half of the instantaneous natural 

mortality in each population, 𝑀 (some small variation between populations is assumed), 𝐀𝐩 
is the survivorship following the imposition of any fishing mortality occurring in population 
𝑝 (which is implemented as vector multiplication with the vector result of 𝐆𝐩𝑆𝐍,௧), 𝐆𝐩 is 

the growth transition matrix for population 𝑝, and 𝚽𝐑𝐩 is the vector of recruits, 𝐑𝐩, from 

each population multiplied by the movement matrix 𝚽 among populations, and then added 
into each size-class within 𝐍𝐩,𝐭ା𝟏 (the same as if it had been added at the end of the year, 

𝐍𝐩,𝐭; because the end of each year is the same as the start of the next. 

The survivorship following the fishing mortality rate over a year is defined as the 
complement of an annual harvest rate A: 
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𝐴, ൌ ൫1 െ 𝑠,,௧𝐻,௧൯  ሺ7.2ሻ 

where 𝐴, is the survivorship of length class 𝐿 for population 𝑝, 𝑠,,௧ is the selectivity of 

length class 𝐿 in year 𝑡, and 𝐻,௧ is the fully selected harvest rate in year 𝑡 for population 𝑝 
(the harvest rate being the proportion of exploitable biomass taken as catch). We explicitly 
use exploitable biomass because the standard use of a legal minimum length (LML) in 
abalone fisheries can lead to the exploitable biomass being very different from the mature 
biomass. 

an alternative view of the survivorship would be: 

𝐀𝐩,𝐭 ൌ 𝑒ି𝐬𝐩,𝐭ி,  ሺ7.3ሻ 

where 𝐬𝐩,𝐭 is the vector of selectivity-at-length (or size). Strictly, selectivity is assumed to be 
equal for all populations within a zone (although as selectivity is combined with emergence, 
which varies by population, the 𝑝 subscript is also required; see below), and 𝐹,௧ is the fully 

selected, instantaneous fishing mortality rate for population 𝑝 in year 𝑡. This simplification 
means that now the transition from cryptic and emergent no longer needs to be included in 
the annual dynamics. However, it does require that selectivity is now a combination of 
selectivity-by-diver and Emergence, which is only influential on the final selectivity if the 
logistic used to describe emergence overlaps the legal minimum length (which is quite 
possible in some areas of the western zone where the size at maturity can be relatively large 
and in the early years of the fishery in Tasmania and the LML was only 127mm). 

7.1.1 Model Initiation 

Model initiation will always begin with each population being assumed to be at equilibrium 
in the absence of fishing. At equilibrium, 𝐍∗, the absence of fishing mortality implies that 
survivorship from the annual harvest rate equals one, 𝐀 ൌ 𝟏.𝟎, which can therefore be 
omitted from the initiation): 

𝐍𝐩∗ ൌ 𝚽𝐑𝐩  𝐒𝐩𝐡𝐆𝐒𝐩𝐡𝐍𝐩∗  

If it is assumed that there is no larval movement, 𝚽 ൌ 𝐈, the Unit matrix, then that matrix 
can also be ignored (for the time-being) in the dynamics, which can be re-arranged to obtain 
an analytic expression for the equilibrium numbers-at-length 𝐍𝐩∗  (Sullivan et al, 1990): 

𝐍∗ െ 𝑆𝐆𝐩𝑆𝐍𝐩∗ ൌ 𝐍∗൫𝐈 െ 𝑆𝐆𝑆൯ ൌ 𝐑𝐩 

which, finally, implies (Sullivan et al, 1990): 

𝐍𝐩∗ ൌ ൫𝐈 െ 𝐒𝐩𝐡𝐆𝐒𝐩𝐡൯
ିଵ
𝐑𝐩  ሺ7.4ሻ 

If, however, there is even a minor degree of larval dispersal, and for blacklip abalone in 
Tasmania a value of 0.5 percent (0.005) between populations is plausible, then the analytical 
solution is no longer valid. In practice, within aMSE, the R-package from this project (R 
Core Team, 2024; Haddon, 2024), the analytic solution is used to obtain the starting point for 
an iterative application of the unfished dynamics until an equilibrium is obtained (see the help 
for the function testequil). 
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7.1.2 Initial Depletion 

By definition the model is initiated at an unfished equilibrium. However, having the complete 
fishery history is not a luxury afforded to every fishery so there will be instances where prior 
to conditioning the mdoel prior to applying the known historical catches, all or at least some 
SAU may already be depleted to different degrees. The level of such depletion may be 
suggested by the application of the sizemod size-based integrated assessment program to 
each SAU (see chapter on Conditioning the MSE with the sizemod Package). Alternatively, 
alternative levels may be applied in a hypothetical manner to determine their influence. 

If an initial depletion is required this is input in the control file under the ZONE section in the 
initdepl vector, with a value for each SAU (even if it equals 1.0, meaning no initial 
depletion). This preliminary depletion is conducted within the depleteSAU() aMSE function. 
If the initdepl value for an SAU is < 1.0, then this uses a simple trial and error search for the 
harvest rate that depletes each SAU to a level closest to the value in initdepl and uses that 
value to deplete the populations within the SAU so the final depletion is as close as can be to 
the required value. Only then does the conditioning (fitting the operating model to the 
available observations) occur. The dynamics for applying any initial depletion level is set to 
use the selectivity that is reported for the first year of observational data. 

7.2 Biology and Stock Related Statistics 

7.2.1 Emergence 

A logistic curve (Haddon, 2011, 2021) can be used to describe the transition from the cryptic 
to the emergent component of the population, but this could only become influential on the 
dynamics if natural mortality differs between the two components or if the emergence logistic 
overlaps with the selectivity curve, and or the Legal Minimum Length (LML). 

𝐸, ൌ
1

1  𝑒𝑥𝑝 ൬െ𝑙𝑜𝑔ሺ19ሻ ቀ𝐿 െ 𝐿ாହቁ / ቀ𝐿ாଽହ െ 𝐿ாହቁ൰

𝐸, ൌ
1

1  𝑒𝑥𝑝 ቀെ𝑙𝑜𝑔ሺ19ሻ ቀ𝐿 െ 𝐿ாହቁ /𝛿ቁ

  ሺ7.5ሻ 

where 𝐸, is the proportion of size-class 𝐿 that are emergent in population 𝑝, and 𝐿ாହ 

and 𝐿ாଽହ are the usual logistic parameters defining the lengths at which 50% and 95% are 

emergent in population 𝑝. The term 𝛿 is the constant ቀ𝐿ாଽହ െ 𝐿ாହቁ. Emergence from 

crypsis only becomes an issue for the dynamics of the model if they are considered to have 
different natural mortality rates within crypsis and/or when the emergence curve overlaps 
with the selectivity curve (which it can do when the LML is low, e.g. 127mm early on in 
Tasmania, especially on the west coast). Where the selectivity and emergence curves overlap 
then the proportion remaining in crypsis would act as a refuge, effectively reducing the 
fishing mortality on those size classes. 

7.2.2 Selectivity 

Selectivity-by-diver is assumed to be equal across populations within a zone, but a 𝑝 
subscript could be added if different LML were expressed in different parts of a zone (this 
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might be the case if different LML were imposed in different parts of the same zone, which 
can occur in Tasmania!). In the operating model Selectivity, 𝑠,௧ for length 𝐿 in year 𝑡 needs 
to be defined by year to permit changes in the LML to be reflected in the selectivity by 
divers. This implies that rather than a single vector of values, a matrix of selectivity values 
will be required, one column per year. Each year’s selectivity is defined using a lower-case 𝑠 
to distinguish it from Survivorship: 

𝑠,௧ ൌ
1

1  𝑒𝑥𝑝ሾെ𝑙𝑜𝑔ሺ19ሻሺ𝐿 െ 𝐿௦50ሻ/𝛿௦ሿ
  ሺ7.6ሻ 

where 𝛿௦ ൌ 𝐿௦95 െ 𝐿௦50. 

Strictly, in case the emergence curve overlaps the selectivity curve, to define selectivity we 
should multiply the selectivity-at-length by the emergence-at-length (element x element, or 
Hadamard, multiplication). That way, if there is overlap it will alter the selectivity 
appropriately, and if there is no overlap then selectivity will not be affected. Importantly, 
because emergence varies by population, this means that the selectivity expressed would not 
necessarily be the same across all populations. 

𝑠,,௧ ൌ 𝑠,௧ ൈ 𝐸,

𝐬𝐩,𝐭 ൌ 𝐬𝐭 ⊗ 𝐄𝐩
  ሺ7.7ሻ 

7.2.3 Growth 

The growth from size-class 𝑗 to size-class 𝑖 is described by the elements of a growth 
transition matrix defined by: 

𝐺,, ൌ න
1

√2𝜋𝜎,
exp൭െ 

𝐿 െ 𝐿‾

2൫𝜎,൯
ଶ൩൱

ା
ௐ
ଶ

ିஶ

𝑑𝐿 𝐿 ൌ 𝐿ெ

𝐺,, ൌ න
1

√2𝜋𝜎,
exp൭െ 

𝐿 െ 𝐿‾

2൫𝜎,൯
ଶ൩൱

ା
ௐ
ଶ

ି
ௐ
ଶ

𝑑𝐿 𝐿ெ ൏ 𝐿  𝐿ெ௫

  ሺ7.8ሻ 

where 𝐺,,  is the probability of growing from size class 𝑗 into size class 𝑖 in population 𝑝, 

𝐿𝑊 is the size-class width, 𝜎,  is the standard deviation of the normal curve describing the 

growth increments of animals starting in size class 𝑗 in population 𝑝, 𝐿  is the length of size 

class 𝑖, and 𝐿‾  is the mean growth increment of animals starting from the mean of size-class 

𝑗. 𝐿ெ and 𝐿ெ௫ are the minimum and maximum size-classes, with the maximum being 
treated as a plus group. To ensure that all columns sum to 1.0 (to prevent growth implying 
losses or gains of its own), and to make 𝐿ெ௫ a plus group, the final row of the matrix is 
modified for each column 𝑗 as: 
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𝐺,ಾೌೣ,ೕ
ൌ 𝐺,ಾೌೣ,ೕ

 ቌ1 െ  𝐺,,

ಾೌೣ

ୀభ

ቍ  ሺ7.9ሻ 

The expected mean growth increment from size-class 𝑗 (so it grows into size class 𝑖) is 
defined using an inverse logistic growth curve that has been found to describe blacklip 
abalone growth well (Haddon et al. 2008; Helidoniotis et al., 2011): 

𝐿‾,, ൌ 𝐿, 
𝑀𝑎𝑥𝛥𝐿

1  𝑒𝑥𝑝ൣ𝑙𝑜𝑔ሺ19ሻ൫𝐿, െ 𝐿,50൯/𝛿,൧
 𝜀,ೕ

 

𝑀𝑎𝑥𝛥𝐿 is the maximum growth increment for the population 𝑝, 𝐿,50 and 𝐿,95 are 
the usual logistic parameters defining the initial lengths at which 50% and 5% of the 
maximum growth increment are expressed (𝛿,  is simply the 95% minus the 50% 

parameters). Note that the 𝑙𝑜𝑔ሺ19ሻ is positive, which inverts the logistic curve (compare 
with the equation for emergence; Equation 7.5). The 𝜀,ೕ

 is the variation around the mean 

expected growth increment. It is assumed to be normally distributed with a standard deviation 
that varies with the growth increment (Haddon et al. 2008): 

𝜎,ೕ
ൌ

𝑀𝑎𝑥𝜎
1  𝑒𝑥𝑝ൣ𝑙𝑜𝑔ሺ19ሻ൫𝐿, െ 𝐿,95൯/𝛿,,ఙ൧

  ሺ7.10ሻ 

The ൫𝐿ெ௫ െ 𝐿,95൯ remains a constant and can be parameterized as such (𝛿,,ఙ). 
Alternative descriptions of this variation, such as the use of a power law (Haddon, 2021), 
may be explored for their impact. Additional growth curve description options could be 
included in the R package aMSE (Haddon, 2025) if requested by users. 

An important influence on the growth increment estimates is the negative bias that appears to 
be introduced by the tagging methods used in their estimation (See Haddon et al, 2013, page 
191, Figure 70). This means that when conditioning the abalone operating model, it will be 
necessary to compare the predicted unfished numbers-at-size with those obtained from the 
fisheries catch-at-size. In that earlier work, after using the best estimates of growth increment 
from tagging, the predicted size-distribution of the unfished population had a smaller average 
size than the observed frequencies in the catches from a non-pristine fishery. Clearly 
modifications to the growth parameters were required and options are discussed in the growth 
section of the Conditioning_the_MSE chapter. 

7.2.4 Weight-at-Length 

The weight-at-length, 𝑊, relationship involves two constants: 

𝑊, ൌ 𝑎𝐿
  ሺ7.11ሻ 

During the conditioning of the model it is possible that an observed power relationship that 
exists between the two parameters can be used instead of estimating both (see Haddon et al, 
2013, page 209, Figure 75). Using this has the advantage that any correlation between the two 
parameters is maintained even when random pairs are used. 
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7.2.5 Maturity-at-Length 

Maturity at size, 𝑚,, uses an alternative logistic curve, again with two parameters, 𝛼 and 

𝛽, only this time 𝐿ହ ൌ െ𝛼/𝛽 and the inter-quartile distance is 2𝑙𝑜𝑔3𝛽 ൌ
2.197225𝛽. 

𝑚, ൌ
𝑒𝑥𝑝൫𝛼  𝛽𝐿൯

1  𝑒𝑥𝑝൫𝛼  𝛽𝐿൯
ൌ

1

1  ቀ𝑒𝑥𝑝൫𝛼  𝛽𝐿൯ቁ
ିଵ  ሺ7.12ሻ 

such curves are best fitted to observed data using a Generalized Linear Model that uses 
binomial residual errors (see the associated R package biology). 

7.2.6 Spawning and Exploitable Biomass 

Mature or spawning biomass needs to include numbers-at-size by maturity-at-size and 
weight-at-size. The operating model (OM) operates at the population scale but the ‘predicted’ 
data from the OM needs to be at the SAU level. Hence, the outputs from each population 
need to be combined in a valid manner (see later under Sampling). Whatever the case for 
sampling, we will still need population-based estimates of such things as exploitable biomass, 
numbers-at-size, and so on, so methods for combining the appropriate populations into a 
single SAU are required. Some, such as numbers-at-size, will need simple summation while 
others, such as cpue, might require catch-weighted values. A population-based estimate of 
spawning biomass at time 𝑡, 𝐵,௧

ௌ , can be obtained through: 

𝐵,௧
ௌ ൌ  ൫𝑚,𝑊,𝑁,,௧൯

ಾೌೣ

ୀಾ

  ሺ7.13ሻ 

Spawning biomass is, like exploitable biomass, calculated in the same units as the 𝑊, 
equation (dependent upon what parameter values are used). If that is in grams then it requires 
division by 1e6 to estimate tonnes, if in kg then division by 1000 is required. Exploitable 
biomass, when used to calculate CPUE, is estimated after half of natural mortality and growth 
have occurred and before any fishing mortality occurs in any single year. Remember that the 
selectivity for each population, 𝑠,,௧ includes any effects of Emergence: 

𝐵,௧
ா ൌ  𝑠,,௧𝑊,𝐺,,𝑒

ିெ/ଶ𝑁,,௧

ಾೌೣ

ୀಾ

  ሺ7.14ሻ 

where the exploitable numbers-at-size 𝐿 in year 𝑡, 𝑁,,௧
ா , is obtained from: 

𝑁,,௧
ா ൌ 𝐺,,𝑒

ିெ/ଶ𝑠,,௧𝑁,,௧  ሺ7.15ሻ 

where 𝑁,,௧ is the numbers-at-size 𝐿 at the start of year 𝑡 for population 𝑝. 

For internal consistency, however, exploitable biomass is also reported as start-of-year values 
as well as mid-year values, and so is simply the sum across size-classes of the final numbers-
at-size at the end of the previous year by the selectivity times the weight-at-length: 



119 
 

𝐵,௧ାଵ
ா ൌ  𝑠,,௧𝑊,𝑁,,௧

ಾೌೣ

ୀಾ

  ሺ7.16ሻ 

where 𝐵,௧ାଵ
ா  is the start-of year exploitable biomass (equals the end of year exploitable 

biomass). 

7.2.7 Catchability and CPUE 

At least in the Tasmanian blacklip abalone fishery, the relationship between catch-rates and 
catches is usually observed to be linear, hence the relation between catches and effort is also 
linear. Because of this catch-rates are assumed to have at least some influence over the 
distribution of catches among areas. Observed catch-rates (cpue) would naturally be expected 
to be variable through time and across areas and so are modelled as: 

𝐼௧, ൌ 𝑞൫𝐵,௧
ா ൯

ఒ
𝑒ே൫,ఙ൯ 

where 𝐼௧, is the cpue in year 𝑡 for area 𝑝, 𝑞 is the catchability coefficient within population 

𝑝. 𝐵,௧
ா  is the mid-year exploitable biomass in year 𝑡 and area 𝑝, with a non-linearity 

coefficient of 𝜆, and 𝑒ே൫,ఙ൯ is a Log-Normal random deviate, with 𝜎 being the standard 

deviation of the catchability coefficient 𝑞. If 𝜆 ൌ 1.0 then the relationship between cpue 

and exploitable biomass is linear, values other than 𝜆 ൌ 1.0 lead to non-linear relationships, 
which can make rather a large difference to the 𝑞 value. Given how important the use of 
cpue is in all Australian abalone harvest strategies, this is one assumption whose influence is 
in dire need of testing. We are using 𝑝 as a sub-script for population (or area of persistent 
production), because in the conditioning each population within each Spatial Assessment 
Unit corresponds to a particular area within that SAU. Effectively, area and population are 
the same thing in the model. 

7.2.8 Annual Model Dynamics 

Once each population is initiated its dynamics can be projected forwards a year at a time 
depending on how much catch is expected to be taken or how much effort is expected to be 
focussed into each population. The population initiation sets up the equilibrium numbers for 
the properties defined for each population. Then, given a specific harvest rate for each 
population they can be projected forward in yearly steps. This projection is based around how 
the numbers-at-size change through fishing, growth, natural mortality, and recruitment. As 
before, the fishing mortality rate over a year is defined as the complement of an annual 
harvest rate and is distributed down the diagonal of an otherwise zero matrix A: 

𝐴, ൌ ൫1 െ 𝑠,,௧𝐻,௧൯ 

where 𝐴, is the survivorship of length class 𝐿 for population 𝑝, 𝑠,,௧ is the selectivity of 

length class 𝐿 in year 𝑡, and 𝐻,௧ is the fully selected harvest rate in year 𝑡 for population 𝑝 
(the harvest rate being the proportion of exploitable biomass taken as catch). We can define 
the survivorship from applying half of natural mortality as follows: 

𝑆 ൌ 𝑒ିெ/ଶ 
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𝑆 does not need to be a vector as multiplying a matrix or vector by a constant is simpler and 
quicker. We apply this survivorship twice in a year with the other dynamics occurring 
between: 

𝐍𝐩𝐭ା𝟏 ൌ 𝑆ൣ𝐆𝐩𝐀𝐩𝐭 𝑆𝐍𝐩𝐭 ൧  𝚽𝐑𝐩 

7.2.9 Recruitment Processes 

Recruitment is described using a vector with all new recruits allocated to the first size class 
and all other size classes being set to 0. This may need modification if small size classes are 
used (perhaps 1mm) and post-larval forms are variable in size. A Beverton-Holt stock 
recruitment relationship was assumed, as re-parameterized by Francis (1992), with a and b 
parameters that were restructured in terms of steepness, ℎ, unfished mature or spawning 

biomass, 𝐵
ௌ, and the average unfished recruitment level, 𝑅: 

𝑎 ൌ
4ℎ𝑅,

5ℎ െ 1
 and 𝑏 ൌ

𝐵,൫1 െ ℎ൯
5ℎ െ 1

 

Using this re-parameterization the Beverton-Holt relationship becomes: 

𝑅,௧ ൌ
4ℎ𝑅,𝐵,௧

ௌ

൫1 െ ℎ൯𝐵,  ൫5ℎ െ 1൯𝐵,௧
ௌ 𝑒ఌ,ିఙ,ೃ

మ /ଶ 

where 𝜀,௧ is defined as: 

𝜀,௧ ൌ 𝑁൫0,𝜎,ோ
ଶ ൯ 

The expected residual error distribution around the recruitment is log-normal; 𝜎,ோ  is the 

standard deviation of the natural logarithm of the recruitment residuals, and െ𝜎,ோ
ଶ /2 is a 

bias correction term that ensures that the time series of estimated recruitment values relates to 
the mean rather than the median recruitment level (Hastings & Peacock 1975). This requires, 
for each population, that ℎ, 𝑅,, 𝐵,, and 𝜎,ோ  be defined for each population, and for 

each year that 𝐵,௧
ௌ  be estimated. Should deterministic recruitment be required (as when 

calculating the unfished, equilibrium zone structure), then set 𝜎,ோ to a very small number 
(when 1e-08 is squared this is the smallest number possible on most computers with 15 
significant digits). 

𝐴, is the virgin biomass per recruit and is defined as the mature stock biomass that would 

develop given a constant recruitment level of 1. Thus, at a biomass of 𝐴,, distributed across 

a stable size distribution, the resulting recruitment level would be 𝑅, ൌ 1. 𝐴, acts as a 

scaling factor in the recruitment equations by providing the link between 𝑅, and 𝐵,
ௌ . 

𝐴, can thus be estimated by setting the annual recruitment level to 1, obtaining the 
equilibrium size distribution using unfished dynamics. At the virgin biomass per recruit, 
𝐴,, the average unfished recruitment level, 𝑅,, is related directly to the unfished mature, 

or spawning, biomass, 𝐵,
ௌ : 
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𝐵,
ௌ ൌ 𝑅,𝐴, 

In Tasmania, during the conditioning, the average unfished recruitment level for each SAU 
(AvRec = 𝑅) is adjusted so that the fit of the predicted CPUE is close to the observed CPUE 
for each SAU. The populations within each SAU are defined using the Tasmanian GPS 
logger data to identify areas of persistent productivity (see the Conditioning section). Then 
the 𝑅 for each SAU is distributed among the populations in proportion to the relative yield 
reported for each of the GPS defined areas of persistent productivity (APPs, which we refer 
to as populations). Without a time-series of such detailed GPS data then the relative size of 
each population could be defined by randomly selecting (from a log-normal distribution) an 
initial unfished average recruitment, 𝑅,, which, given the equilibrium size distribution, 

provides an estimate of each population’s unfished mature biomass 𝐵,
ௌ . 

7.2.10 Larval Dispersal 

The annual dynamics include recruitment but a small proportion of each population’s larval 
production can disperse away from that population. To be general we use a matrix of the 
potential movement from population to population but, given the linear structure to most 
reefs around coastlines very few cells in the matrix will be filled. The diagonal of the 
movement matrix defines the proportion of larvae that are expected to settle within the 
population that generates them. The immediate sub-diagonal and super-diagonal relate to the 
movement between adjacent populations. This simplification is used in the operating model 
because while a small amount of movement is known to occur (Miller et al, 2009), little or 
nothing else is known about that dispersal. 

Alternative matrix structures could be generated to account for more complex spatial 
arrangements of populations but such things would need to acknowledge they were based on 
speculation rather then even approximate estimates. 

𝛷 ൌ

𝑝ଵ,ଵ 𝑝ଶ,ଵ 0 0 0 0 0
𝑝ଵ,ଶ 𝑝ଶ,ଶ 𝑝ଷ,ଶ 0 0 0 0

0 𝑝ଶ,ଷ 𝑝ଷ,ଷ 𝑝ସ,ଷ 0 0 0
0 0 𝑝ଷ,ସ 𝑝ସ,ସ 𝑝ହ,ସ 0 0
0 0 0 𝑝ସ,ହ 𝑝ହ,ହ 𝑝,ହ 0
0 0 0 0 𝑝ହ, . .
0 0 0 0 0 . 𝑝,

 

7.2.11 Fleet Dynamics 

The application of any harvest control rule in this complex spatial model will entail the 
translation of SAU level aspirational catches (which should sum to the zone’s TAC), into 
catches applied to each individual population within each SAU. Of course, the aspirational 
catches per SAU derived from the harvest control rules (HCR) within each harvest strategy 
will not be taken exactly, The overall TAC will eventually constrain total catches, but some 
SAU will experience larger catches than expected, and others will experience smaller catches. 
As a result, the application of the TAC as catches to particular populations requires two steps. 
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The first step is to include variation into the aspirational catches for each SAU from the HCR 
and then scale them until their sum equals the original TAC. The second step requires that 
each SAU’s actual catch is distributed across their component populations in some manner 
that reflects plausible fleet dynamics. 

The assumption is made in the Tasmanian HS that the sum of the catches across the SAU 
equates to the TAC. If ever the TAC were not completely caught this assumption would 
obviously have to change. Each year the aspirational catches for either the zone TAC or for 
each SAU will be determined by application of the harvest control rule for whatever harvest 
strategy is being used. In Tasmania, the harvest control rule uses a multi-criterion decision 
analysis (mcda) based around different aspects of cpue. In the operating model this is 
implemented initially without error. 

𝐶௨,௧, ൌ 𝐶௨,௧ିଵ ൈ 𝑚𝑢𝑙𝑡ℎ𝑐𝑟 

where 𝐶௨,௧ିଵ is the aspirational catch from SAU 𝑢 in year 𝑡 െ 1, 𝐶௨,௧,  is the aspirational 

catch from SAU 𝑢 in year 𝑡, and 𝑚𝑢𝑙𝑡ℎ𝑐𝑟 is the previous year’s acatch multiplier derived 
from whatever HCR is used. It is important to understand that it is the aspirational catches 
that are modified each year, not the actual catches. 

The new 𝑇𝐴𝐶௧ will be: 

𝑇𝐴𝐶௧ ൌ  𝐶௨,௧,

ௌ

௨ୀଵ

 

The first step on the way to setting the potential actual SAU catch is to include Log-Normal 
variation to the SAU exploitable biomass on the assumption that the divers gain an 
appreciation of how much is present in each SAU, but they make mistakes and availability 
varies across years so there is a misallocation of effort: 

𝐵௨,௧
ா,∗ ൌ 𝐵௨,௧

ா 𝑒ఌೠ,ିఙಳ
మ/ଶ 

where: 

𝜀௨,௧ ൌ 𝑁ሺ0,𝜎
ଶሻ 

𝜎 is the standard deviation of the variation that occurs between the real exploitable biomass 
and the perceived distribution of exploitable biomass across SAU’s, which also includes 
other sources of uncertainty. 

This variation is introduced into the potential SAU catches using: 

𝐶௨,௧
∗ ൌ 𝑇𝐴𝐶௧ ൈ

𝐵௨,௧
ா,∗

∑𝐵௨,௧
ா  

where 𝐶௨∗ is the actual SAU catch scaled to the new TAC. 

A useful diagnostic for use during conditioning, and during model runs, would be to examine 
the predicted variation between the actual catches and aspirational catches determined by the 
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HCR, if one has such data from a real fishery. Otherwise, it should be characterized from the 
outputs, which will allow its variation to be examined for plausibility. 

7.2.12 Calculation of MSY 

The maximum sustainable yield for each population is estimated for each one using a 
numerical approach that characterizes the expected production curve but starting with the 
equilibrium unfished population (or app) and sequentially applying a sequence of harvest 
rates for two or three times the number of historical years of data until it approximates an 
equilibrium yield for each applied harvest rate. The maximum yield achieved across the range 
of harvest rates is the MSY. The precision of such numerical methods is constrained by the 
steps selected between the individual harvest rates. The smaller the increments on harvest rate 
the finer the resolution. The dynamics of this numerical process, by default, uses the 
selectivity that will be applied at the end of the projection years. 

If, for some, currently un-imagined, reason the selectivity from an alternative year is wanted 
then the index for that year (between 1 and hyrs + pyrs) can be put into the selectyr argument 
for the do_MSE() function. 

7.3 Model Output 

7.4 Sampling from the Operating Model 

The MSE operates by simulating the yearly dynamics and then, using data from the operating 
model (OM) it applies a harvest control rule, at a period determined by the respective harvest 
strategy being tested, generates the required management advice and conducts subsequent 
years using that management advice. This is repeated for as many years as are included in the 
simulation. 
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Figure 7.1: The feedback loop of an MSE simulation framework as used with abalone. The data can include anything from 
the operating model although always at the scale of SAU, including catches, cpue (and/or survey indices), length-
composition of catches, each with error, as well as error-free statistics from the simulated population. 
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8. Conditioning by Population 

8.1 Summary 

The AIRF project 2023_63 has enabled the aMSE code base developed during the FRDC 
project 2019-118 to be expanded to allow for population-based conditioning of individual 
populations within different spatial assessment units (SAU). The option of population 
conditioning is now available although if is not used it has no effect on the simulation 
outputs. Population based conditioning is required when attempting to answer tactical issues 
such as the effect of making a change to the legal minimum length (LML) in areas where the 
heterogeneity of productivity is very great (such variation is common in blacklip abalone 
stocks). In addition to adding these new options, an array of new outputs relating to 
population-based dynamics and properties have also been implemented, which, again, are 
designed to facilitate answering SAU specific questions relating to optimizing management 
decisions other than catch levels. All of these changes now operate seamlessly within the 
codebase. 

8.2 Introduction 

In previous sections, methods for conditioning the operating model within the MSE have 
been described. Assuming it has been possible to use the sizemod package to fit to data from 
each SAU, ideally, the dynamics of each SAU, as they are predicted by the aMSE software, 
should be very similar to that expressed by the individual SAU in the sizemod software. 
Differences can be expected because in the aMSE package each SAU, instead of being 
treated as a single dynamic pool population (as it is in sizemod), is represented as a set of 
mostly separate populations. 

Prior to the changes described in this chapter the biological properties of each population 
within each SAU are based upon the properties expressed at the SAU scale, albeit with 
random variation included on almost all biological properties. The degree of variation added 
in the examples is set to a level in each case to mimic the spatial heterogeneity in productivity 
typically expressed by the blacklip abalone around Tasmania). When conditioning by SAU 
the current property that is an exception to this strategy is the average unfished recruitment 
level (R0 or AvRec), estimated as a parameter for each SAU by sizemod. Now, in aMSE, the 
SAU level AvRec is sub-divided across each SAU’s populations on a fixed proportional basis, 
which will be unique to each SAU (and has been derived from the relative yield from the 
population areas as defined using the GPS logger data). The method of implementation can 
be seen in the Chapter 5 under the propREC section. As a result of this variation, there can be 
many differences between and within SAU and how they are represented in the MSE. 

The development of both the aMSE and sizemod R packages was partly driven by needing to 
solve the various problems associated with providing a generalized framework for conducting 
MSE analyses on spatially structured benthic fisheries on species that required size-structured 
dynamics (because they were hard to age). The sizemod R package was developed as a 
means of conditioning the MSE operating model within aMSE such that its predicted 
dynamics attempted to match both the observed CPUE as well as the observed size-
composition of the catch of abalone. The advent of sizemod led, in turn, to improvements to 
aMSE because of the new options presented by the outputs of sizemod. It is still the case, 
however, that some of the outputs from sizemod need to be modified slightly when they are 
represented by multiple populations within each SAU. 
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In some parts of the fishery more information is available concerning some aspects of the 
biology such as the size-at-maturity and growth. There are sometimes large differences in 
yield between some areas of persistent production (app or population), which are not able to 
be accounted for merely by including random variation and modifying the average unfished 
recruitment (AvRec) for a particular app/population. In addition, it can sometimes be 
desirable to set up scenarios where groups of apps within SAU have either low, middling, or 
relatively high productivity. In such cases some way of manipulating the variables important 
to productivity within individual apps (=populations) is required. The proportional strategy 
used to allocate unfished recruitment across the collection of apps within each SAU is not 
suitable for fixing values of size-at-maturity or growth in particular populations, so an 
alternative approach was developed and implemented. 

8.2.1 Variables Important for Productivity and Yield 

A number of model parameters relating to biological properties important for productivity 
exist. These include: 

 average unfished recruitment, AvRec 
 the growth parameters, here we use the maximum growth increment, DLMax, and the 

length at 5 percent of the maximum increment, L95 (= L50 + L50inc) 
 the size-at-maturity, here we use the L50mat parameter (= length at 50 percent 

maturity) and the SaMa, or size-at-maturity ‘a’ parameter, the intercept of the 
maturity ogive with length 

 the instantaneous natural mortality rate, M 
 the steepness of the stock recruitment relationship, h (from the Beverton-Holt stock 

recruitment curve) 

 the weight-at-length relationship, here we use the exponential b parameter of the 𝑊 ൌ
𝑎𝐿 that represents the weight at a given length 𝑊. 

How these can be allocated individually to particular populations/apps is the subject of this 
chapter. 

8.2.2 The Difference between Productivity and Yield 

The notions of productivity and yield sometimes appear confounded in the fisheries literature 
but their differences are clear. 

The yield from any area is simply the amount of catch that has been removed over whichever 
time-frame is being considered. Whether the ‘yield’ should include any other fishing related 
mortality is a complication best avoided by treating that separately. With abalone, non-fishing 
related mortality should be minimal, especially as when divers accidentally remove sub-legal 
sized animals from the rock, they are required to place the animals back on a rock surface and 
ensure they adhere. Illegal, unreported, and unregulated catches (IUU catches), such as that 
due to poaching or even recreational fishing, should be treated separately where there is 
available information. 

Productivity is a more complex concept than simple yield. It relates to the rate of production 
of potential yield, which is one reason the two concepts can get confused. For example, the 
somatic growth of individuals is a strong contributor to a population’s productivity. Thus, a 
low productivity reef of the same area as a higher productivity reef will, on average, produce 
a lower yield because the individuals in the more productive population are expected to grow 
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past the legal minimum length (LML) faster and to grow to a larger, heavier size. Two equal 
sized reefs might produce the same yield in a given year, but the more productive reef will be 
able to sustain such catches for longer. Generally, a lower productivity area would be 
expected to have slower growth, a smaller maximum size, and possibly a lower size-at-
maturity. The possible yield is determined both by the biological productivity and the legal 
minimum size, as well as the area of a reef. A key factor for abalone sustainability is setting 
the legal minimum size appropriately. 

The caveat above about ‘same size reef’ is important, because, in principle, it would not be 
impossible to obtain a seemingly high yield from a relatively low productivity area if that 
area was large. Even so, it would not be expected to be able to sustain large catches for as 
long as an equivalent high productivity area. Similarly, if the available reef area of a highly 
productive population was low then the potential yield from it will also be low. Despite this, a 
difference between the two is that it is easier to deplete a higher productivity area if the legal 
minimum size is set at a size that enables the fishery to deplete the spawning biomass. If the 
LML is set at a size that allows good access to slower growing, less productive populations in 
an SAU (spatial assessment unit), this will increase the risk of over-fishing for faster 
growing, more productive areas, which, very sensibly, are generally preferred by divers. 

As natural mortality is generally strongly related to somatic growth rates and maturity, 
natural mortality is also expected to be strongly influential on productivity (Beverton, 1992; 
Jensen, 1996). However, as is typical in most fisheries, estimates of natural mortality for any 
species are generally poorly defined, and this is especially the case with species that are 
difficult to age. Abalone around Tasmania appear able to live to at least 30 years of age 
(based on growth rates and maximum sizes), which using simple life-history relationships 
implies a natural mortality rate of about 0.15. This is generally used along with slight 
variation among populations. When attempting to adjust the productivity of individual 
populations (=apps) it is recommended that changes be made to growth, maturity, and 
recruitment, rather than to natural mortality. 

The average long term yield from an area is correlated with the area of reef fished 
(determined using the combined areas of the KUD derived from the GPS logger data). So, 
when attempting to set the productivity AvRec, or the proportion of recruitment allocated to a 
population, should perhaps be the first variable to modify. The total AvRec influences the 
SAU’s total population, so changing that will alter each population according to its allocated 
share. 

After having set up the SAU approximately to the level reflecting that observed in the fishery, 
it is recommended that when proceeding to condition on individual populations then the 
parameters on which to concentrate relate to somatic growth and maturity. Of course, if 
required, any of the model’s parameters can be added to the list of those fixed by population. 
For example, the steepness (defsteep) in the data file) can be influential because it also affects 
the stock recruitment curve, although once the other parameters are fixed the effects of 
steepness become relatively minor. 

8.3 Methods 

A description of conditioning each SAU might summarize earlier sections by describing how 
a base case set of constants for natural mortality, steepness, and cpue hyperstability, lambda, 
were chosen for implementation within aMSE. Once selected, the available fishery and 
biological data for each SAU could be put through sizemod and the model fitted in a manner 
that estimated some growth parameters, the unfished average recruitment, and the average 
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diver selectivity across sizes of abalone. In addition, sizemod estimates recruitment deviates 
across those years where sufficient size-composition data exist to inform the model. Other 
constants, such as those describing the weight-at-length are estimated outside of the model. 

8.3.1 Relative Weighting of Data Sets 

Within sizemod the relative weight attributed to the cpue index of relative abundance is 
described by Francis (2011; the so-called Francis weighting). At the same time, an iterative 
re-weighting routine is used to discover the optimum weighting to apply to the size-
composition data. Finally, relative bias ramps are applied to the recruitment deviates to 
account for the varying amount of information available at the limits of the observed size-
composition data (Method & Taylor, 2011). 

Routines have now been developed that collect together the final optimum parameters into a 
matrix and these can now be automatically transferred to the control and data files used by 
aMSE so that the latest estimates of the important productivity parameters are easily 
transferred accurately from sizemod. To enhance comparability between the outputs of both 
sizemod and aMSE it is important that the assumed constants for such things as the weight-
at-length, maturity-at-length, growth and all the rest are the same for each SAU in both 
software systems. 

After transferring the parameters from the sizemod estimates into each SAU within the 
aMSE operating model further adjustments are required to the AvRec and recruitment 
deviates to optimize the fits between the predicted CPUE at the SAU level and the observed 
standardized CPUE as well as optimizing the fits between the predicted size-composition of 
catch and those observed. This is done within aMSE using the two functions adjustavrec() 
and optimizerecdevs() (see their individual help pages within aMSE for their arguments and 
the syntax for how to use them. 

The differences between the predicted MSY and AvRec for sizemod and aMSE is such that 
for each SAU in the Tasmanian western zone the MSY in aMSE is about 9.5% less than the 
sizemod estimate for each SAU, and the AvRec is about 3.8% larger in aMSE, although that 
relationship is much more variable between SAU. These differences between the sizemod 
and the aMSE values are a result of the dynamics in aMSE being split between each SAU’s 
populations rather than a single dynamic-pool within each SAU SAU and the scale of the 
differences alters with the number of populations used within an SAU. 

8.3.2 Conditioning the Operating Model at a Population Level 

Much of the data used to condition the operating model is contained within the 
‘saudataXXX.csv’ file (see Chapter 5 for a detailed description of the contents of each input 
file). Each SAU has a particular average value of the important variables to be set, such as 
DLMax and L50mat. In addition, there is an associated variability sDLMax and sL50mat used 
to define the variation used when randomly varying each parameter across the populations 
within each SAU. For what follows it is important that the name of the variation parameter is 
identical to the variable it relates to except for the prefix ‘s’. This is because the names are 
used explicitly when identifying which parameters are to be set by population and which are 
to remain randomly allocated across populations. Those that are to be set by population need 
to have their associated variation set to a very small number (e.g. 1e-06 or smaller) so that 
when variation is added it does not affect the set value. 
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8.3.3 An Hypothetical Example 

An hypothetical sauX can be used to illustrate what changes are required to implement 
population-based parameter setting. The example will be unrealistic as only four populations 
will be implemented within a single SAU so that the example is simple to follow (a matrix of 
four rows is easier to follow than one of 30 rows). In real simulations there would generally 
be many more separate populations. For example, the western zone simulation used in FRDC 
project 2019-118 had 56 populations across the eight SAU. When conditioning by population 
the potential to increase the spatial detail is greater. 

We are using the catch, cpue, and size-composition data from sau5 in Tasmania’s Northern 
zone to form the basis of our hypothetical SAU. In reality, the number of identifiable 
populations within sau5 is somewhere between 13 and 24, with a final number to be decided 
through consultation with experienced industry members regarding on-the-ground fishing 
behaviour. 

The structure and contents of the control, data, and size-composition data files are described 
in the chapter on The Input Files (Chapter 5). No changes are required to the control file. The 
bysau flag, under the START section in the control file should remain set = 1: 

 START,,,, 
 runlabel, sauX , the scenario label,, 
 datafile, saudatasauX_by_sau.csv , name of saudata file,, 
 bysau,1, 1=TRUE and 0=FALSE,, 
 … 

Prior to AIRF project 2023_63 the bysau flag was inserted into the code base in readiness in 
case an opportunity came to condition the population properties directly rather than as 
random variation from SAU properties. Once starting the 2023_63 project, after some false 
starts, it soon became clear that there was a more effective way of implementing population-
based conditioning that did not need the bysau flag. Rather than produce a large and difficult 
to use matrix of all variables (minus the variation terms) by all populations it is much more 
efficient to only modify those variables that influence productivity (or other aspects of the 
fishery that are to be explored) and leave the rest as random variation from SAU averages. 
The bysau flag is now deprecated and eventually it will be removed from the code. It is 
retained in the meantime to avoid the potential for disruption of other users of the aMSE 
software. If the flag is set to its default value of 1 (as in: bysau, 1,) then the flag will continue 
to have no effect on any of the scenarios. 

Instead of using the bysau flag a simpler solution for the user was to allow the software to 
determine which parameters were to be fixed for each population when reading in the data 
file. This is the source of the requirement that care is needed when typing the names of the 
selected parameters. When no population conditioning is used, which was the only option 
developed prior to AIRF project 2023_63, the propREC section only referred to the 
proportion of each SAU’s AvRec (average unfished recruitment level) allocated to each 
population. Obviously, the proportions across all populations sums to 1.0. In the data file this 
is represented using the following lines at the bottom of the file (see Chapter 5; the symbols 
at the start of each line in the text are not included in the data files): 

 propREC,, 
 sau, pop,AvRec, 
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 5, 1, 0.1, 
 5, 2 ,0.4, 
 5, 3, 0.1, 
 5, 4, 0.4, 

In the single-SAU-four-population example of sauX we will illustrate fixing the L50Mat, the 
size at 50% maturity, SaMa, the intercept of the maturity ogive , DLMax, the maximum 
growth increment, L50, the size at half the maximum growth increment, and L50inc, which is 
used to produce the L95 growth parameter (𝐿ଽହ ൌ 𝐿ହ  𝐿ହ). 

When implementing population-based conditioning, where selected variable/parameter values 
are defined or fixed in each population, it is necessary to provide values for each of the 
selected parameters for each population implemented in the operating model. The 
implementation involves expanding the original propREC section at the bottom of the data 
file. Perhaps the section should no longer be termed propREC, but again, to prevent 
disruption to other users this name will be retained (for the time being; naming things when 
writing software is harder than it might look). 

The names used in the first line below the propREC label must have exactly the same spelling 
and capitalization as is used in the table of SAU parameters that make up the top of the data 
file (see Chapter 5). The first three columns remain identical to the default conditioning setup 
(as above). We have added the five parameter names and the respective values that we wish 
to allocate to each of the four populations. 

In the north-west for example, we might use an analysis of the extensive data set available on 
the size-at-maturity across sau 5 and 6 to define a more specific set of values for the different 
populations identifiable using the GPS logger data. Similarly, in consultation with Industry 
divers, the relative productivity expected from each smaller area within each SAU can be 
used to select appropriate values for the growth parameters. Such conditioning at a finer 
geographical scale than the SAU is very dependent upon the GPS logger data. But this finer 
scale is required to make sense of the heterogeneity in productivity expressed by the various 
areas of persistent productivity identified within the north-west. 

Table 8.1: An example expansion of the propREC data fields at the bottom of the MSE data file required to set the values of 
five extra parameters in each population. 

sau pop AvRec L50Mat SaMa DLMax L50 L50inc 

5 1 0.1 99.5 -15.969 21.8 112 31.5 

5 2 0.4 98.9 -15.969 24.0 112 38.5 

5 3 0.1 113.0 -25.853 26.6 115 34.9 

5 4 0.4 115.0 -25.853 22.6 115 40.1 
 

 

The data file, with most unchanged lines omitted, should now have the following form: 

 Biological properties by population for hypothetical sauX 
 SPATIAL,, 
 nsau,1, number of spatial management units 
 saupop,4, number of populations per SAU in sequence 
 saunames,X, labels for each SAU 
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 PDFs,32, 
 DLMax ,23.50603217, maximum growth increment 
 sDLMax ,1.00E-06, variation of MaxDL NOTE tiny value 
 L50 ,112, Length at 50% MaxDL 
 sL50 ,1.00E-06, variation of L50 NOTE tiny value 
 L50inc ,30.34957282, L95 - L50 = delta =L50inc 
 sL50inc ,1.00E-06, variation of L50inc NOTE tiny value 
 … 
 AvRec,878733.028324352, 
 sAvRec ,1.00E-07, NOTE tiny value 
 … 
 SaMa,-22.371, maturity logistic a par 
 L50Mat,98.8992042, L50 for maturity b = -1/L50 
 sL50Mat,1.00E-07, NOTE tiny value 
 … 
 propREC,, 
 sau, pop,AvRec,L50Mat,SaMa,DLMax,L50,L50inc, 
 5,1,0.1, 99.5,-15.969,21.8,112,31.5, 
 5,2,0.4, 98.9,-15.969,24.0,112,38.5, 
 5,3,0.1,113.0,-25.853,26.6,115,34.9, 
 5,4,0.4,115.0,-25.853,22.6,115,40.1, 

 

Note the single-sau-four-population spatial structure under SPATIAL. Each of the five 
parameters fixed to population specific values has its related variation value denoted with the 
same name prefixed with s, as, for example, sDLMax and sL50inc. The SaMa parameter does 
not have additional variation as the weight-at-length relationship it affects is extremely 
sensitive to this value and adding even small amounts of variation led to unpredictable 
outcomes. In each case these sParName values have been set to very low value such as 1e-06 
or 0.000001. When each population is generated within the aMSE software, including this 
much variation leads to no noticeable change to the fixed values. 

If the user forgets to set the variation variable to a very low value and yet sets up the rest of 
the data file to fix specific parameters, then a warning message is generated. Similarly, if a 
parameter is not set up to be fixed for each population but the variation term is still set very 
low, a different warning message is generated. 

8.3.4 Other Details 

Earlier data files were somewhat odd in that the variation term for the DLMax was named 
sMaxDL. 

 PDFs,32, 
 DLMax, 23.50603217, maximum growth increment 
 sMaxDL, 1.00E-06, MaxDL name decremented, replaced by sDLMax 
 L50, 112, Length at 50% MaxDL 
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 … 

This is merely an historical hang-over, which once started was hard to change without 
bothering all current users of the program. Fortunately, an approach to fixing this has now 
been developed. Should a user begin developing a scenario using this older format the 
software will automatically rename the sMaxDL as sDLMax in the ‘saudata.csv’ file to allow 
correct usage of population-based conditioning, and it also issues a warning pointing out that 
sMaxDL is deprecated and has been changed. The end result is that users can continue to use 
older data files without issues arising. This strategy may be applicable to other deprecated 
instances that have developed from the on-going implementation of expanded options within 
aMSE. 

8.3.5 Other Code Base Changes 

With the advent of population level conditioning some novel model output relating to the 
population scale have now been included in the standard aMSE output. These will enable the 
individual dynamics within each population to be visualized and examined in more detail. 
This will be of great value if, for instance, an investigation was made of the implications of 
changing the Legal minimum length in SAU’s that have populations that exhibit large 
differences in growth and productivity (as is now happening in Tasmania’s NorthWest). 

Some of these additions are illustrated below from the sauX example, the four populations 
were set up to have approximately two different levels of productivity. 

 

Figure 8.1: The relationship between production and mature biomass depletion for the four populations in the sauX example 
SAU. 

 

Note how in Figure 8.1 all four populations have their maximum productivity at very similar 
spawning biomass depletion levels despite having very different productivity. In fact, the 
production is relatively flat between depletion levels of about 25 - 35 % 
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Figure 8.2: The relationship between production and mature biomass depletion in the sauX example SAU, at an expanded 
scale. 

 

Numerous other small but important changes were required in many places throughout the 
aMSE codebase once the population-based conditioning was implemented to ensure that the 
most recent changes do not alter the functionality of the software when population 
conditioning is not used. 
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9. Perturbations within Projections 

9.1 Introduction 

Within the simulation framework used in aMSE, the population dynamics are not 
deterministic and variation is introduced in the projections through random variation in the 
predicted recruitment levels, through variation being introduced in the how the actual catches 
are distributed among the populations (essentially this is in teh description of the fleet 
dynamics), and finally, with variation being introduced into the expression of the predicted 
cpue from the dynamics (this latter is important as all the current harvest strategy 
performance measures are based upon the commercial cpue). 

There are other sources of change and variation that are not accounted for. It is known that 
there have been marine heatwave events that have led to mortality events observed by divers 
(exceptional numbers of dead abalone shells washing back and forth in gutters). Such events 
have been confirmed to correspond to observed oceanographic events entailing large 
deviations from average sea temperatures. The effects of such heatwaves, destructive storm 
events, and other external occurrences, such as toxic algal blooms, are not known from direct 
observations except for the anecdotal observations from divers. These observations inform 
that there has been an impact but provide no measure of the extent or severity of any such 
impacts. When we apply a stock assessment model, such as that implemented in the sizemod 
R package, effectively the dynamics as described by such models only identifies the catches 
and recruitment deviates as the only drivers of the observed dynamics. Without real data on 
possible impacts due to environmental events their scale of any impact cannot be estimated. 

In Australia, there have been heatwave events whose impact is undeniable. In Western 
Australia, during 2011?, a significant heatwave event occurred down the west coast with one 
of its impacts being the effective elimination of the Haliotis roie stocks north of Perth. Other, 
less severe heatwave events (and other such perturbations) potentially can have impacts on 
survivorship of both the emergent and the cryptic animals currently alive. In addition, it is 
simple to imagine that the physiological shocks experienced by mature animals may well 
reduce recruitment success rather than induce death (i.e. sublethal effects). Given these 
considerations a need has therefore been identified for having a facility within aMSE for 
exploring the longer-term influence of possible perturbations to survivorship of currently 
settled animals but also of perturbations to recruitment success in selected years. The 
simulation framework is designed to explore the performance of different versions of abalone 
harvest strategies. It is expected that marine heatwaves and other such perturbations will 
occur into the future, so it will be valuable to be able to determine how each tentative harvest 
strategy handles the possible outcomes of significant perturbations to either survivorship or 
recruitment, or both. 

9.2 Methods and Results 

The capacity to introduce perturbations into the recruitment and the survivorship of post-
larval animals has been introduced in such a way that no changes are required if no 
perturbations are wanted in a set of simulations. Thus, only if perturbations are required are 
changed required, and the only changes required involve adding a few lines of detail into the 
control file, which every scenario must have. No changes are required to any other files. 

In the control file major sections are identified by capitalized headings such as ‘START’, 
ZONE’, ‘RECRUIT’, and ‘RANDOM’. The new section can go anywhere but it is proposed 
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that when it is wanted it gets introduced between the ‘PROJECT’ and the ‘PROJLML’ 
sections. Thus, in a control file with no defined perturbations one might have: 

… 
initLML, 140, initial LML for the unfished zone if no historical catches used 
PROJECT, 30, number of projection years for each simulation 

  

PROJLML, need the same number as there are projection years 
2021, 145, Legal Minimum Length (LML, MLL, MLS) e.g. 140 
2022 , 145 
… 
 

To add a single year of perturbations we can add: 

 

… 
initLML, 140, initial LML for the unfished zone if no historical catches used 
PROJECT, 30, number of projection years for each simulation 

ENVIRON, 1, numbers of years of intervention 
eyr, 5, which projection years will have an event 
proprec1, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, one for each sau 
propNt1, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, one for each sau 

PROJLML, need the same number as there are projection years 
2021, 145, Legal Minimum Length (LML, MLL, MLS) e.g. 140 
2022 , 145 
… 
__________________________________________________________________________  

The new keyword is ‘ENVIRON’. The commas are important as they identify the separate 
fields that aMSE needs to read. 

This set up would impose a perturbation in the fifth projection year and the impact will force 
the recruitment to be only 0.3 of the predicted recruitment level taken off the deterministic 
stock-recruitment curve for each population, when it only had 10 percent of the usual random 
recruitment variation that every other year experiences. Survivorship of post-larval animals 
will be 99 percent, so only a tiny impact on emergent and cryptic animals. If once this section 
has been introduced, one wants to turn off the perturbation then all that is needed is to set the 
‘ENVIRON’ number = 0. That number must be greater than zero for there to be an effect. 

With almost no impact on settled individuals the outcome on the dynamics only becomes 
apparent after a delay of between 5 - 8 years. 
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Figure 9.1: Predicted catches across the whole Tasmanian western zone when a perturbation is introduced in the fifth 
projection year (2025). The time-lag required for animals that should have settled that year mean that its effect only 
becomes apparent 5 - 9 years after the event, in the low 2030s. 

 

To add two years in which perturbations occur we can add: 

 

… 
initLML, 140, initial LML for the unfished zone if no historical catches used 
PROJECT, 30, number of projection years for each simulation 

ENVIRON, 2, numbers of years of intervention 
eyr, 5, 8, which projection years will have an event 
proprec1, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, one for each sau 
proprec2, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, one for each sau 
propNt1, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, one for each sau 
propNt1, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, one for each sau 

PROJLML, need the same number as there are projection years 
2021, 145, Legal Minimum Length (LML, MLL, MLS) e.g. 140 
2022 , 145 
… 
__________________________________________________________________________ 
 

which gives rise to: 
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Figure 9.2: Predicted catches across the Tasmanian western zone when identical perturbations are introduced in both the 
fifth and eighth projection years (2025 and 2028). The time-lag required for animals that should have settled that year mean 
its effect only becomes apparent 5 - 9 years after the event, in the low 2030s, but this time extends for much longer to prevent 
stock and fishery recovery. 

 

9.3 Comparing Scenarios 

When the results of these perturbations are compared with the identical harvest strategy with 
no perturbations then the impacts become clearer. 

 

 

Figure 9.3: The dynamics of the western Tasmanian zone comparing no perturbations as a base-case (grey), with the effect 
of a single perturbation in 2025 (red), and a double perturbation in 2025 plus 2028 (green). 
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It should be clear that if a sequence of environmentally driven perturbations occur that 
significantly disrupt the recruitment success, then the stock recovery will be compromised. 
Given the increasing frequency of such events this is a real possibility that needs to be 
included in any considerations given to rebuilding Tasmania’s abalone stocks. 

Given the availability of this facility to introduce perturbations it is now possible to explore 
how large a perturbation must be to have a significant impact (the example of repeated zone-
wide 70% reductions in recruitment success would constitute quite a severe impact). Now it 
is possible to examine the effect of smaller scale events (at a scale of sau) on the potential 
risk to stock rebuilding. 
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11. Appendix: MSE Output Object Structure 
After running the do_MSE function with its output pointed at the R list/object named out, we 
can examine the contents of these objects using the base R function str(object, 
max.level=1). That can sometimes lead to more information than is immediately useful so it 
is often easier to use a codeutils wrapper function str1(out) or str2(out), which now 
omit the attributes (see their respective help pages). 

It will be noted that using str2 expands lists within lists, however, it will also be noted that 
some of the objects have lists within lists within lists. Obviously the structure of any of these 
objects can be examined by drilling further down, as for example one could use 
str1(out$zoneCP[[1]]) to see the structure of each of the 56 population’s constants 
definition object (as used in the projections; look at zoneC to see what was used during the 
conditioning). 

The main simulated results from the MSE are contained in a large object named out, which is 
a list of 28 other objects, many of which are lists themselves. 

11.1 Main Output R Objects from aMSE 
List of 29 
 $ tottime     : 'difftime' num 2.94 
 $ runtime     : POSIXct[1:1], format: "2025‐01‐07 07:54:54" 
 $ starttime   : POSIXct[1:1], format: "2025‐01‐07 07:51:58" 
 $ glb         :List of 19 
 $ ctrl        :List of 13 
 $ zoneCP      :List of 56 
 $ zoneD       :List of 14 
 $ zoneDD      :List of 14 
 $ zoneDP      :List of 14 
 $ NAS         : NULL 
 $ projC       :List of 5 
 $ condC       :List of 15 
 $ sauout      :List of 10 
 $ outzone     :List of 13 
 $ production  : num [1:71, 1:6, 1:56] 256 244 233 223 213 ... 
 $ condout     :List of 2 
 $ HSstats     :List of 2 
 $ saudat      : num [1:32, 1:8] 21.5 0.3 130 1 54.3 ... 
 $ constants   : num [1:33, 1:56] 6 21.5 0.3 130 1 ... 
 $ hsargs      :List of 16 
 $ sauprod     : num [1:7, 1:8] 438.882 149.874 20.272 0.341 140.632 ... 
 $ zonesummary :List of 2 
 $ kobedata    : num [1:8, 1:4] 0.33 0.449 0.258 0.242 0.313 ... 
 $ outhcr      :List of 8 
 $ scoremed    : num [1:30, 1:7] 42.8 35.3 31.8 31.5 33.4 ... 
 $ popmedcatch :List of 8 
 $ popmedcpue  :List of 8 
 $ popmeddepleB:List of 8 
 $ pops        : num [1:56, 1:26] 1 2 3 4 5 6 7 8 9 10 ... 
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The structure of each of the objects contained within out will be described with the objects 
used in the running of the MSE described first, followed by outputs from the conditioning, 
followed by outputs from the projections. 

 

11.1.1 glb : List of 19 

A globals object with its components used in many places 

List of 19 
 $ numpop   : num 56 
 $ nSAU     : num 8 
 $ midpts   : num [1:105] 2 4 6 8 10 12 14 16 ... 
 $ Nclass   : num 105 
 $ reps     : num 250 
 $ hyrs     : num 58 
 $ pyrs     : num 30 
 $ hyrnames : num [1:58] 1963 1964 1965 1966 ... 
 $ pyrnames : int [1:30] 2021 2022 2023 2024 2025 2026 2027 2028 ... 
 $ saunames : chr [1:8] "sau6" "sau7" "sau8" ... 
 $ SAUpop   : num [1:8] 3 3 5 7 9 9 12 8 
 $ larvdisp : num 0.01 
 $ indexCE  : int 30 
 $ envimpact: NULL 
 $ warnfile : chr 
"c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EG/warnings.txt" 
 $ sauLML   : num 0 
 $ sauindex : num [1:56] 1 1 1 2 2 2 3 3 ... 
 $ move     : num [1:56, 1:56] 0.995 0.005 0 0 0 0 0 0 ... 
 $ SAUnum   : num [1:56] 6 6 6 7 7 7 8 8 ... 

 

11.1.2 ctrl : List of 13 

Variables used when controlling the MSE run. 

List of 13 
 $ runlabel   : chr "Base_Case" 
 $ datafile   : chr "saudataEG.csv" 
 $ controlfile: chr "controlEG.csv" 
 $ reps       : num 250 
 $ randseed   : num 3543304 
 $ randseedP  : num 0 
 $ withsigR   : num 0.35 
 $ withsigB   : num 0.1 
 $ withsigCE  : num 0.1 
 $ catches    : num 58 
 $ projection : num 30 
 $ bysau      : num 1 
 $ rundir     : chr "c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EG" 
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11.1.3 projC : List of 5 

Other constants used during the projections. Note that projyrs = glb$pyrs, which is now used 
more often in the code-base and eventually it will be deprecated in projC. 

List of 5 
 $ projLML: num [1:30, 1:2] 145 145 145 145 145 ... 
 $ projyrs: num 30 
 $ Sel    : num [1:105, 1:56, 1:30] 9.48e‐35 2.84e‐34 ... 
 $ SelWt  : num [1:105, 1:56, 1:30] 5.41e‐38 1.44e‐36 ... 
 $ histCE : num [1:29, 1:8] NA NA NA NA NA ... 

 

The NA in the histCE vector reflects the fact that in SAU6 (the 8 SAU are across the 
columns), like SAU13, has no CPUE data until 2000. 

11.1.4 condC : List of 7 

More constants used during conditioning; compdat holds the observed size-composition data 
from each sau in lfs, as well as their relative proportions in palfs. 

List of 15 
 $ histCatch   : num [1:58, 1:8] 0 1 2 8 22 31 24 29 39 33 ... 
 $ histyr      : num [1:58, 1:2] 1963 1964 1965 1966 1967 ... 
 $ histCE      : num [1:29, 1:8] NA NA NA NA NA ... 
 $ yearCE      : num [1:29] 1992 1993 1994 1995 1996 ... 
 $ initdepl    : num [1:8] 1 1 1 1 1 1 1 1 
 $ compdat     :List of 2 
  ..$ lfs  : num [1:38, 1:31, 1:8] 0 0 0 0 0 0 0 0 0 0 ... 
  ..$ palfs: num [1:31, 1:8] 0 0 0 0 0 0 0 0 0 0 ... 
 $ recdevs     : num [1:58, 1:8] ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ... 
 $ parsin      : logi FALSE 
 $ optpars     : NULL 
 $ sizecomp    : num 1 
 $ lffiles     : chr "lf_WZ90‐20.csv" 
 $ poprec      : num [1:56, 1:3] 6 6 6 7 7 7 8 8 8 8 ... 
 $ yearFIS     : NULL 
 $ fisindexdata: NULL 
 $ fissettings : NULL 

 

11.1.5 condout : List of 2 

sauZone contains the conditioning dynamics across hyrs years summed across populations to 
the sau scale for each of the dynamic variables. This ignores replicates, as found in zonePsau, 
and is there more for convenience than needed. ssq is for each sau and reflects the difference 
between the observed cpue and the predicted. 

List of 2 
 $ sauZone:List of 9 
  ..$ matB    : num [1:58, 1:9] 439 438 436 429 409 ... 
  ..$ expB    : num [1:58, 1:9] 415 414 413 409 395 ... 
  ..$ midyexpB: num [1:58, 1:9] 0 431 430 428 421 ... 
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  ..$ catch   : num [1:58, 1:9] 0 1 2 8 22 ... 
  ..$ recruit : num [1:58, 1:9] 259139 259078 258961 258478 257088 ... 
  ..$ harvestR: num [1:58, 1:9] NaN 0.00232 0.00465 0.0187 0.05228 ... 
  ..$ cpue    : num [1:58, 1:9] NA 437 436 432 422 ... 
  ..$ deplsB  : num [1:58, 1:9] 1 0.998 0.994 0.977 0.933 ... 
  ..$ depleB  : num [1:58, 1:9] 1 0.999 0.996 0.985 0.953 ... 
 $ ssq    : num [1:8] 385 1801 10159 2444 777 ... 

 

11.1.6 zoneDD : List of 13 

The dynamics object generated during conditioning. Each of the dynamic’s matrices are 2-
dimensional (years vs populations), the predicted size-composition matrices (catchN, Nt, and 
NumNe) are 3-dimensional (size-class vs year vs population). 

List of 14 
 $ SAU     : chr [1:56] "sau6" "sau6" "sau6" ... 
 $ matureB : num [1:58, 1:56] 311 311 309 304 ... 
 $ exploitB: num [1:58, 1:56] 293 293 292 289 ... 
 $ midyexpB: num [1:58, 1:56] 0 305 304 303 ... 
 $ catch   : num [1:58, 1:56] 0 0.707 1.414 5.655 ... 
 $ harvestR: num [1:58, 1:56] 0 0.00232 0.00465 0.01869 ... 
 $ cpue    : num [1:58, 1:56] 437 437 436 432 ... 
 $ recruit : num [1:58, 1:56] 191443 191398 191312 190957 ... 
 $ deplsB  : num [1:58, 1:56] 1 0.998 0.994 0.978 ... 
 $ depleB  : num [1:58, 1:56] 1 0.999 0.996 0.985 ... 
 $ catchN  : num [1:105, 1:58, 1:56] 0 0 0 0 0 0 0 0 ... 
 $ Nt      : num [1:105, 1:58, 1:56] 1.91e+05 7.45e‐03 1.50e‐01 2.18 ... 
 $ NumNe   : num [1:105, 1:58, 1:56] 0 0 0 0 0 0 0 0 ... 
 $ outfis  : NULL 

11.1.7 zoneCP : List of 56 

The constants for each projected population in a list of lists (see str1(out$zoneCP[[1]])). 

 ..$ :List of 21 .. ..- attr(*, “class”)= chr “abpop” 
 ..$ :List of 21 .. ..- attr(*, “class”)= chr “abpop” 
 ..$ :List of 21 .. ..- attr(*, “class”)= chr “abpop” 
 ..$ :List of 21 .. ..- attr(*, “class”)= chr “abpop” 
 … 
 ..- attr(*, “class”)= chr “zoneC” 

 

Each abpop is a list of 21 objects. 

List of 21 
 $ Me      : num 0.154 
 $ R0      : num 192282 
 $ B0      : num 311 
 $ ExB0    : num 293 
 $ MSY     : num 14.5 
 $ MSYDepl : num 0.342 
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 $ bLML    : num 132 
 $ scalece : Named num 1.41 
 $ qest    : num 4.76 
 $ lambda  : num 0.75 
 $ SaM     : num 99.5 
 $ popdef  : Named num [1:22] 21.6 130.4 ... 
 $ LML     : Named num [1:58] 127 127 127 127 127 ... 
 $ G       : 'STM' num [1:105, 1:105] 1.67e‐09 4.54e‐08 ... 
 $ Maturity: num [1:105] 3.02e‐10 4.73e‐10 ... 
 $ WtL     : num [1:105] 0.000571 0.005075 ... 
 $ Emergent: num [1:105] 3.74e‐15 6.43e‐15 ... 
 $ Select  : num [1:105, 1:88] 6.81e‐45 3.49e‐44 ... 
 $ SelWt   : num [1:105, 1:88] 3.89e‐48 1.77e‐46 ... 
 $ MatWt   : num [1:105] 1.72e‐13 2.40e‐12 ... 
 $ SAU     : chr "sau6" 

11.1.8 zoneDP : List of 14 

The much larger dynamics object generated during the projections. Each of the dynamic’s 
matrices are 3-dimensional having years x populations x replicates. The first year in the 
model relates to the unfished state or the initial state, hence the zero for mid-year exploitable 
biomass (midyexpB), catch, acatch, etc. 

List of 14 
 $ SAU     : num [1:56] 6 6 6 7 7 7 8 8 ... 
 $ matureB : num [1:88, 1:56, 1:250] 311 311 309 304 ... 
 $ exploitB: num [1:88, 1:56, 1:250] 293 293 292 289 ... 
 $ midyexpB: num [1:88, 1:56, 1:250] 0 305 304 303 ... 
 $ catch   : num [1:88, 1:56, 1:250] 0 0.707 1.414 5.655 ... 
 $ acatch  : num [1:88, 1:8, 1:250] 0 1 2 8 ... 
 $ harvestR: num [1:88, 1:56, 1:250] 0 0.00232 0.00465 0.01869 ... 
 $ cpue    : num [1:88, 1:56, 1:250] 437 437 436 432 ... 
 $ cesau   : num [1:88, 1:8, 1:250] 0 437 436 432 ... 
 $ catsau  : num [1:88, 1:8, 1:250] 0 1 2 8 ... 
 $ recruit : num [1:88, 1:56, 1:250] 191443 191398 191312 190957 ... 
 $ deplsB  : num [1:88, 1:56, 1:250] 1 0.998 0.994 0.978 ... 
 $ depleB  : num [1:88, 1:56, 1:250] 1 0.999 0.996 0.985 ... 
 $ TAC     : num [1:88, 1:250] 0 20 86 290 ... 

 

11.1.9 NAS : List of 2 

The size composition objects following projection. Each array is a 4-dimensional object 
having size-class x year x population x replicates. Nt is the population structure while catchN 
is the expected size-composition of the catch by population. 

 ..$ Nt : num [1:105, 1:88, 1:56, 1:100] 1.61e+05 1.97e-06 8.07e-05 … 
 ..$ catchN: num [1:105, 1:88, 1:56, 1:100] 0 0 0 0 0 0 0 0 0 0 … 

When saving the out object from a run of the do_MSE function, if the includeNAS argument 
is set = FALSE, then the NAS object will be set = NULL. This option exists because the NAS 
object, made up of multiple 4-D arrays can be very large. so the output can increase from a 
few 100s of Megabytes, or almost 2 Gigabytes. 
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11.1.10 sauout : a List 

sauout is one of the major outputs from the MSE. It contains the dynamics for each sau in the 
zone. Including: 

List of 10 
 $ matureB : num [1:88, 1:8, 1:250] 439 438 436 429 409 ... 
 $ exploitB: num [1:88, 1:8, 1:250] 415 414 413 409 395 ... 
 $ midyexpB: num [1:88, 1:8, 1:250] 0 431 430 428 421 ... 
 $ catch   : num [1:88, 1:8, 1:250] 0 1 2 8 22 ... 
 $ acatch  : num [1:88, 1:8, 1:250] 0 1 2 8 22 ... 
 $ harvestR: num [1:88, 1:8, 1:250] NaN 0.00232 0.00465 0.0187 0.05228 ... 
 $ cpue    : num [1:88, 1:8, 1:250] 0 437 436 432 422 ... 
 $ recruit : num [1:88, 1:8, 1:250] 259139 259078 258961 258478 257088 ... 
 $ deplsB  : num [1:88, 1:8, 1:250] 1 0.998 0.994 0.977 0.933 ... 
 $ depleB  : num [1:88, 1:8, 1:250] 1 0.999 0.996 0.985 0.953 ... 

If the includeNAS argument is set = TRUE, then sauout would be a list of 12 objects that 
would include: 

 ..$ catchN : num [1:105, 1:88, 1:8, 1:100] 0 0 0 0 0 0 0 0 0 0 … 
 

 ..$ Nt : num [1:105, 1:88, 1:8, 1:100] 2.59e+05 9.25e-03 1.90e-01 2.81 

 

11.1.11 outzone : List of 12 

outzone contains the projection dynamics across all years summed across populations and sau 
to give the zone scale changes for each of the dynamic variables, including catchN and Nt 
(being only 3-D arrays tends to reduce their size. outzone is another major output from the 
MSE. 

List of 13 
 $ matureB : num [1:88, 1:250] 14541 14523 14445 14184 ... 
 $ exploitB: num [1:88, 1:250] 14587 14578 14530 14361 ... 
 $ midyexpB: num [1:88, 1:250] 0 15132 15113 15035 ... 
 $ catch   : num [1:88, 1:250] 0 20 86 290 ... 
 $ acatch  : num [1:88, 1:8, 1:250] 0 1 2 8 ... 
 $ TAC     : num [1:88, 1:250] 0 20 86 290 ... 
 $ harvestR: num [1:88, 1:250] 0 0.00132 0.00569 0.01929 ... 
 $ cpue    : num [1:88, 1:250] 0 405 399 395 ... 
 $ recruit : num [1:88, 1:250] 6705236 6704327 6700497 6687410 ... 
 $ deplsB  : num [1:88, 1:250] 1 0.999 0.993 0.975 ... 
 $ depleB  : num [1:88, 1:250] 1 0.999 0.996 0.984 ... 
 $ catchN  : num [1:105, 1:88, 1:250] 0 0 0 0 0 0 0 0 ... 
 $ Nt      : num [1:105, 1:88, 1:250] 6.71e+06 2.00e‐02 4.34e‐01 6.82 ... 

 

11.1.12 outhcr 

The objects contained in this are determined by a custom function written within each 
jurisdiction. Each harvest strategy is very different from every other jurisdiction’s harvest 
strategy, and each reaches its outcomes in different ways. The outhcr object is produced by a 
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custom function which is pointed to by the do_MSE argument makeouthcr. This uses a 
valuable method in the R language where a function can have a different function as an 
argument so that different functions can be applied in different circumstances (such as 
jurisdictions having different harvest strategies). The listing below is for Tasmania but would 
be different for South Australia and different again for Victoria. Note in Tasmania’s case 
each object is a 3-D array of the projection years (30) x sau (8) X replicates (100; in real-life 
scenario testing one would use perhaps 250 replicates as 100 might not be sufficient to define 
the total variability expected). 

List of 8 
 $ g1s      : num [1:30, 1:8, 1:250] 3.62 9.22 9.17 6.66 ... 
 $ g4s      : num [1:30, 1:8, 1:250] 6.08 6.49 9.17 9.31 ... 
 $ targsc   : num [1:30, 1:8, 1:250] 2.43 3.93 5.83 6.68 ... 
 $ finalsc  : num [1:30, 1:8, 1:250] 3.46 5.1 7 7.33 ... 
 $ index    : num [1:30, 1:8, 1:250] 4 6 7 8 10 9 8 9 ... 
 $ catchmult: num [1:30, 1:8, 1:250] 0.85 1 1.05 1.1 1.2 1.15 1.1 1.15 ... 
 $ metaflag : num [1:30, 1:8, 1:250] 0 0 0 0 0 0 0 0 ... 
 $ cetarg   : num [1:30, 1:8, 1:250] 122 122 122 122 ... 

The projected final score (finalsc), in Tasmania, is that which is used to select which 
aspirational catch multiplier (hcr in hsargs), is used in an sau. These data are used to generate 
the plots seen in the scores tab in the aMSE output (as in finalscores_sauX.png files). 

11.1.13 production 3D array 

A 3d array of harvest rates x 6 dynamic variables x numpop, where the dynamic variables are 
‘ExB’ exploitable biomass, ‘MatB’, mature biomass, ‘AnnH’, the annual harvest rate, ‘Catch’ 
the yield, the maximum of which is the MSY, ‘Deplet’, the equilibrium depletion that the 
harvest rate leads to, and ‘RelCE’, the relative cpue predicted at that equilibrium. 

 num [1:81, 1:6, 1:56] 256 244 233 223 213 … 
 attr(*, “dimnames”)=List of 3 ..$ : chr [1:81] “0” “0.005” “0.01” “0.015” … harvest 

rates ..$ : chr [1:6] “ExB” “MatB” “AnnH” “Catch” … dynamic variables ..$ : chr 
[1:56] “1” “2” “3” “4” … population number 

 

11.1.14 condout : List of 2 

Where sauZone is a list of 9 components 2-D matrices containing the conditioned state of 
each of 8 sau (in this case 58-year’s of historical catches) as well as the complete zone (for 
Tasmania) in the ninth column. 

List of 2 
 $ sauZone:List of 9 
  ..$ matB    : num [1:58, 1:9] 439 438 436 429 409 ... 
  ..$ expB    : num [1:58, 1:9] 415 414 413 409 395 ... 
  ..$ midyexpB: num [1:58, 1:9] 0 431 430 428 421 ... 
  ..$ catch   : num [1:58, 1:9] 0 1 2 8 22 ... 
  ..$ recruit : num [1:58, 1:9] 259139 259078 258961 258478 257088 ... 
  ..$ harvestR: num [1:58, 1:9] NaN 0.00232 0.00465 0.0187 0.05228 ... 
  ..$ cpue    : num [1:58, 1:9] NA 437 436 432 422 ... 
  ..$ deplsB  : num [1:58, 1:9] 1 0.998 0.994 0.977 0.933 ... 
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  ..$ depleB  : num [1:58, 1:9] 1 0.999 0.996 0.985 0.953 ... 
 $ ssq    : num [1:8] 385 1801 10159 2444 777 ... 

11.1.15 HSstats : List of 2 

Two HS performance measures, the sum of catches across the first 5 and first 10 years of the 
projections. In this case, this is for each of SAU used separately, and for the combined zone 
total. 

List of 2 
 $ sum10: num [1:250, 1:9] 93.1 84 77.4 79.2 92.4 ... 
 $ sum5 : num [1:250, 1:9] 33.7 30.9 28.1 28 34.7 ... 

11.1.16 saudat : is an array of constants 

This is a copy of the input constants read in from saudata_Scenario.csv in case comparisons 
are wanted. 

 num [1:32, 1:8] 21.5 0.3 130 1 54.3 ... 

11.1.17 constants : an array of constants 

The actual biological and fishery constants used to define each population. 

 num [1:33, 1:56] 6 21.5 0.3 130 1 ... 

 

11.1.18 hsargs a copy of the hsargs 

This is a copy of the hsargs used in the example scenario and will depend upon the HS used. 
For Tasmania it is a List of 16: 

List of 16 
 $ mult      : num 0.1 
 $ wid       : num 4 
 $ targqnt   : num 0.55 
 $ maxtarg   : num [1:8] 150 150 150 150 150 150 150 150 
 $ pmwts     : num [1:3] 0.65 0.25 0.1 
 $ hcr       : num [1:10] 0.25 0.75 0.8 0.85 0.9 1 1.05 1.1 1.15 1.2 
 $ hcrm3     : num [1:10] 0.25 0.75 0.8 0.85 0.9 1 1.1 1.2 1.25 1.3 
 $ startCE   : num 2000 
 $ endCE     : num 2019 
 $ metRunder : num 0 
 $ metRover  : num 0 
 $ decrement : num 1 
 $ pmwtSwitch: num 0 
 $ stablewts : num [1:3] 0.8 0.15 0.05 
 $ hcrname   : chr "constantrefhcr" 
 $ printmat  : NULL 
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11.1.19 sauprod : a 7 x nsau matrix 

A matrix of productivity characteristics for each sau. These include the 𝐵0, 𝐵ெௌ, 𝑀𝑆𝑌, 
𝐷ெௌ (depletion at 𝑀𝑆𝑌 and 𝐵ெௌ), and 𝐶𝐸ெௌ, the predicted cpue at 𝑀𝑆𝑌. 

Productivity properties by SAU 

 sau6 sau7 sau8 sau9 sau10 sau11 sau12 sau13 

B0 438.88 872.17 524.48 2438.88 2071.96 4152.79 3126.26 915.91 

Bmsy 149.87 272.80 166.07 748.36 616.67 1257.99 951.36 303.99 

MSY 20.27 43.74 24.94 122.49 102.78 207.63 156.60 41.74 

Dmsy 0.34 0.31 0.32 0.31 0.30 0.30 0.30 0.33 

CEmsy 140.63 115.89 194.81 198.17 142.31 140.29 91.11 75.48 

Hmsy 0.20 0.20 0.17 0.18 0.17 0.18 0.17 0.19 

Bexmsy 91.32 191.66 126.23 600.53 536.12 1018.44 792.97 193.29 

 

11.1.20 scoremed 

This contains arrays of the outputs from the HS for each sau and each replicate, along with 
the median values for each of the arrays. 

 num [1:30, 1:7] 42.8 35.3 31.8 31.5 33.4 ... 
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12. The JurisdictionHS File or Package 

12.1 Use an R source File or an R Package? 

The abalone harvest strategies that have been implemented in different jurisdictions around 
Australia differ markedly from each other and do so in multiple ways. Initially, in the early 
planning stage of the MSE R package (aMSE), it was envisaged that each harvest strategy 
would be included as a series of R functions within the package. However, it quickly became 
apparent that such an approach would fix each harvest strategy in a single configuration, 
which would defeat one of the major advantages of an MSE framework. Thus, it was decided 
that a better approach would be: 

1. Each jurisdiction to develop and maintain a separate R package that encapsulates all the 
functions required by their respective harvest strategies and their interaction with 
aMSE. The use of an R package is likely to be the most efficient option and would 
help ensure maintenance and modification of the HS within the MSE would adhere to 
good practices with respect to documentation and transparency. This would also aid 
each jurisdiction in simplifying the task of becoming more transparent, defensible, 
and open about each harvest strategy. 

However, a viable option, especially when under development, would be: 

2. To have each jurisdictions harvest strategy (HS) defined as a series of functions and 
constants in a separate R source file that could be source’d into the R environment 
prior to running the MSE, 

The Tasmanian implementation of the MSE started by using a source R file but has moved 
the functions developed into its own defined R package TasHS. The list of constants used by 
the TasHS (defined as hsargs within aMSE see later) must still be defined as a global 
variable when running the MSE. 

12.1.1 Important Caveat 

It must be emphasized here that any statement in this document concerning the structure and 
operation of the Tasmanian harvest strategy, which will be used as an example, must not be 
taken as a formal statement of the HS. That can be found in the actual harvest strategy 
document (Bradshaw, 2018), which is currently undergoing changes as a result of a formal 
review as well as suggested changes as a result of the MSE testing. Thus, whatever 
description is given here must not be taken as “the” Tasmanian harvest strategy at any future 
time. For details of the implementation of the Tasmanian harvest strategy, read Bradshaw 
(2018) and the separate documentation to the TasHS R package. 

This chapter/section is going to be more technical than others as it involves a description of 
the interaction between the HS functions and the internal functions running the replicate 
projections within the aMSE R package. 

12.1.2 Where the Harvest Strategy is used in aMSE 

Running a scenario within aMSE entails first conditioning the Operating Model within the 
MSE using biological information relating to maturity, growth, natural mortality, and other 
productivity related factors. Then any historical fishery data involving catches, catch rates, 
survey results, and catch sampling results can be used to further condition the model so that 
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its dynamics more closely match the observed dynamics of the fishery being explored. The 
conditioning period is taken to be that period over which the harvest strategy being tested was 
not applied (within the aMSE code, this is denoted as a period of hyrs, as in history years). 
Thus, the assumption is that the harvest strategy begins in the first year of the projections 
(hyrs + 1) and will continue to be applied in each year of the projections. In Tasmania, the 
harvest strategy was used informally by the Institute of Marine and Antarctic Sciences 
(IMAS) to recommend aspirational catches for each statistical block (sau) since 2016 and 
used formally to identify the block aspirational catches since 2020. Thus, if using data up to 
the end of 2020, one could start the predictions from 2020 or from 2021. For comparability 
with other jurisdictions 2021 is used so the assumption is that the HS is used from the start of 
projections. 

The stock dynamics, within the model, are stored in an object called zoneDP (as in zone 
Dynamics + Projections; see the R_object_structure chapter). For each year (and replicate) 
within each population, these dynamics are updated to contain another year of the dynamics, 
which involves the cycle of half of natural mortality, growth, fishing mortality, the second 
half of natural mortality, and recruitment (with larval movement). 

At the start of each year of the projections, within the function doprojections(), data required 
by the particular harvest strategy being applied is sampled from the MSE’s zoneDP object. 

Depending on the HS there may be a need to obtain samples of one or more of: 

1. the commercial cpue, 
 

2. any available fishery independent index of abundance, 
 

3. the numbers-at-size in the commercial catch, and 
 

4. the numbers-at-size predicted for a fishery independent survey, if available. 

In addition, the actual catches and the aspirational catches are also required, though these are 
expected to be the same in South Australia. Currently, no other data streams are supported by 
the aMSE’s operating model. All these are included in the MSE function doprojections() 
using the following code. 
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  hcrout <‐ makeouthcr(glb,hsargs)  # make an object ready to be filled 
# Within aMSE, in the function doprojections is the following loop 
  for (year in startyr:endyr) {   # startyr = hyrs+1, endyr = hyrs + pyrs 
    if (verbose) cat(year,"   ")  # indicate status of run by year countdown 
    for (iter in 1:reps) { # reps = number of replicate projections used 
      hcrdata <‐ getdata(sampleCE,sampleFIS,sampleNaS, # generate the data  
                         sauCPUE=zoneDP$cesau[,,iter], # needed by the HS by 
                         sauacatch=zoneDP$acatch[,,iter], # calling getdata 
                         sauNAS=list(Nt=zoneDP$Nt[,,,iter], 
                         catchN=zoneDP$catchN[,,,iter], 
                         NumNe=zoneDP$NumNe[,,,iter]), 
                         year=year,decrement=hsargs$decrement) 
      hcrout <‐ hcrfun(hcrdata,hsargs,saunames=glb$saunames) # run the hcr 
      popC <‐ calcpopC(hcrout,exb=zoneDP$exploitB[year‐1,,iter], # hcr output 
                       sauindex,sigmab=sigmab) #= acatch by SAU or TAC by zone 
      # calcpopC has a fleet dynamics model that subdivides the acatch or TAC 
      # among the populations within each SAU 
    # ...  other code 
    } 
    # ...  other code 
} 

 

The functions relating to the harvest strategy (HS) used in the projections within aMSE have 
specific names. However, this is not a constraint on the user as some of the arguments of the 
function doprojections() are the names given to the functions representing sampleCE(), 
sampleFIS(), and sampleNAS(), each of which can be named as the user wishes (see the help 
file for doprojections() or do_MSE()). The same thing goes for the getdata() function, which 
calls the three sampling functions. In TasHS, the function that does the data sampling is 
called tasdata() and, hence, one of the arguments of do_MSE() and then doprojections(), 
which is inside do_MSE(), is therefore set as ‘getdata = tasdata’. 

Also included in the HS package or source file is the hcrfun, which in Tasmania is the 
mcdahcr() function this takes the input data from getdata(), runs the implementation of the 
HS and outputs, at least, the predicted TAC by zone or aspirational catch by SAU, or both. 
This output is then put into the calcpopC() function (in Tas this is calcexpectpopC()), which 
uses a relatively simple model of the fleet dynamics (how the divers distribute the quota they 
have available to them) to determine how the aspirational TAC or acatches by SAU are 
subdivided among the populations within each SAU. Ideally, the predicted catch by SAU, 
which is all that can be observed in the real fishery, should approximate how the catches are 
distributed among the real SAU. This is less difficult to arrange in Tasmania now that there 
have been meta-rules included in the HS that constrain how far the divers may deviate from 
the proposed aspirational catch per SAU (statistical block in Tas). That also allows for 
diagnostic plots of the predicted deviations to be generated from the projections that are used 
to monitor the MSE simulation performance. 

The idea being used is that the getdata() function has arguments that define each of these 
functions, and also has arguments that reference particular data fields from the dynamic 
object (zoneDP) so that the data required by the harvest strategy can be sampled or generated 
by each of the three ‘sample’ functions. Within the doprojections() function the structure of 
zoneDP consists of: 
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..$ SAU : num [1:56] 6 6 6 7 7 7 8 8 8 8 … 

..$ matureB : num [1:88, 1:56, 1:100] 322 321 320 315 301 … 

..$ exploitB: num [1:88, 1:56, 1:100] 281 305 303 298 284 … 

..$ midyexpB: num [1:88, 1:56, 1:100] 303 330 329 328 323 … 

..$ catch : num [1:88, 1:56, 1:100] 0 0.719 1.441 5.763 15.85 … 

..$ acatch : num [1:88, 1:8, 1:100] 0 1 2 8 22 … 

..$ harvestR: num [1:88, 1:56, 1:100] 0 0.00236 0.00475 0.01932 … 

..$ cpue : num [1:88, 1:56, 1:100] 359 390 389 385 373 … 

..$ cesau : num [1:88, 1:8, 1:100] 0 386 385 381 369 … 

..$ catsau : num [1:88, 1:8, 1:100] 0 1 2 8 22 … 

..$ recruit : num [1:88, 1:56, 1:100] 161023 160996 160943 160725 … 

..$ deplsB : num [1:88, 1:56, 1:100] 1 0.998 0.994 0.978 0.934 … 

..$ depleB : num [1:88, 1:56, 1:100] 0.853 1.084 1.079 1.061 1.011 … 

..$ Nt : num [1:105, 1:88, 1:56, 1:100] 1.61e+05 1.97e-06 … 

..$ catchN: num [1:105, 1:88, 1:56, 1:100] 0 0 0 0 0 0 0 0 0 0 … 

..$ NumNe : num [1:105, 1:88, 1:56, 1:100] 1.61e+05 1.97e-06 … 

..$ TAC : num [1:88, 1:100] 0 20 86 290 775 … 

 

Obviously, if one looks at this after a given run the values seen will differ from these, but the 
structure remains the same (in this case the 88 will reflect the hyrs + pyrs, the 56 the number 
of populations used, the 100 the number of replicates used, and the 105 the number of size 
classes used). 

The 4-dimensional arrays holding the numbers-at-size arrays are removed from zoneDP and 
put into NAS after being output from do_MSE(). However, within doprojections() each object 
can be individually referenced by population or iteration. Note, in the code above the data 
pushed into getdata is zoneDP$cesau, zoneDP$acatch, and zoneDP$NAS (a combination of 
Nt and catchN). 

12.1.3 Inclusion of a Jurisdiction’s HS 

If using a source file then the constants needed by the HS functions could be included in the 
source file. If using a library (R package) then either a source file only containing the 
constants could be used or the hsargs list could be entered explicitly in the R code used to run 
an MSE scenario in aMSE. For example: 
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# hsfile <‐ "TasHS1_Tas.R" 
# source(paste0(rundir,"/",hsfile)) # if using a source file of R functions 
library(TasHS)                    # if using an independent R library the HS 
# constants in a list still need to be made into a global list object 
hsargs <‐ list(mult=0.1, # expansion factor for cpue range when calc the targqnt 
               wid = 4, # number of years in the grad4 PM 
               targqnt = 0.55, # quantile defining the cpue target 
               maxtarg = c(150,150,150,150,150,150,150,150), # max cpue Target 
               pmwts = c(0.65,0.25,0.1),  # relative weights of PMs 
               hcr = c(0.25,0.75,0.8,0.85,0.9,1,1.05,1.1,1.15,1.2),# multipliers 
               hcrm3 = c(0.25,0.75,0.8,0.85,0.9,1,1.1,1.15,1.2,1.25),  
               startCE = 2000, # used in constant reference period HS 
               endCE = 2011,   # used in constant reference period HS 
               metRunder = 0,  # should the metarules be used. o = 
               metRover = 0,   # use metarules 
               decrement=1, # use fishery data up to the end of the time series 
               pmwtSwitch = 0, # number of years after reaching the targCE to 
               stablewts = c(0.4, 0.5, 0.1), # replace pmwts with stablewts 
               hcrname="mcdahcr",     # the name of the HCR used 
               printmat=NULL)   # An option required in some jurisdictions 
# This approach would place the functions making up the Tasmanian Harvest Strategy 
# into the main R environment ready for use in a Tasmanian setting.  

 

Each of the members of hsargs fulfils a specific task within the harvest strategy. In the case 
of the Tasmanian HS the items within hsargs have the following intentions: 

 

1. mult the multiplier on the performance measure bounds to expand them both upwards 
and downwards. default value = 0.1 = 10 percent increase and decrease. 

2. wid the number of years over which to calculate the gradient, default value = 4, 
meaning four years. 

3. targqnt what quantile of the distribution of cpue to use as the target, default value = 
0.55. 

4. maxtarg is the maximum cpue target for each sau, this will vary depending on which 
sau one is working with. 

5. pmwts what weights to give to each of the performance measures. Their order is 
targetCE, grad4, and grad1 with default values = c(0.65, 0.25,0.1). 

6. hcr is used to translate the overall score between 0 - 10, into a multiplier for the 
previous aspirational catch. 

7. hcrm3 multipliers used instead of hcr when meta-rule 3 is active. 
8. startCE is the starting year for CPUE used in Tasmania, the default = 1992. Also used 

as the start year when using constrefhcr() instead of mcdahcr() 
9. endCE the final year of CPUE used in Tasmania when using the constrefhcr, otherwise 

it is ignored. 
10. metRunder = 2 meta rule 1, when the cpue is below the targCPUE how many 

consecutive years must cpue rise before a reduction is NOT made. If set to zero then 
meta-rule 1 is not used. 
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11. metRover = 2 meta rule 2, how many consecutive years of increase above the 
targCPUE must cpue occur before an increase can be made. If set to zero then meta-
rule 2 is not used. 

12. decrement = 1 working in the year after the data are available, if decrement = 1 means 
use all data up to the latest year even if only partial (as in TAS). Using decrement = 2 
means omit the final (partial) year of data from the assessment (as in SA). 

13. pmwtSwitch = 4 how many consecutive years of increase above the targCPUE must 
occur before switching the performance measure weights from pmwts to stablewts 
and switching the acatch multipliers from hcr to hcr3. If pmwtSwitch = 0 then no 
change is made to the PM weights or to the acatch multipliers. 

14. stablewts = c(0.4,0.5,0.1), what performance measure weights should be used once 
pmwtSwitch is triggered. 

15. hcrname = “constantrefhcr” the name of the harvest control rule used. Alternatives in 
Tasmania could be consthcr() (a constant catch HS) and mcdahcr(), that used a 
constant reference period defined by startCE and endCE. 

16. printmat = NULL an option to print out a matrix during development, only used in 
some jurisdictions. 

 

12.2 What Must be Included in the HS File or Package 

All harvest strategies (HS) have arguments, settings and other constants that can be altered to 
influence the performance of the HS (hence hsargs). The Tasmanian HS uses the list as 
described in the code sequence just above. If, somehow, the HS does not require such 
constants then hsargs should be set = NULL as hsargs is still required as a global variable by 
the aMSE code. 

The TasHS package currently contains 23 functions but, in terms of interacting with the MSE 
only eight are used directly. The other fifteen are used by these interacting functions. Within 
the HS file all of these functions can be called whatever the programmer wishes as they are 
referenced as arguments for functions within aMSE. 

The eight required functions are always needed, even if the data they are supposed to 
generate is not used. In such cases then a simple function returning NULL will suffice. For 
example, if no FIS data is currently used in an HS then one might include a function: 

 

tasFIS <‐ function() { # currently no FIS data is used in TAS 
  return(NULL)          # though this may change 
} # end of tasFIS 

 

The first three of the required functions are the sampling functions that take output from the 
operating model and sample the respective data for input into the selected jurisdictions HS. 
The fourth and fifth functions use the first three to sample simulated fishery data from the 
MSE projections and then run the harvest control rule. The sixth required function uses the 
outputs from hcrfun to generate the expected or aspirational catches by sau and by zone, the 
sum of the sau catches should equal the total zone catch and both are the same as the 
expected TAC. The last two functions relate to extracting the internal components of the 
harvest control rule (the scores and weights, etc) so that the operation of the hcr can be 
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monitored. The makeouthcr() function is designed to capture the hcr information as it is 
generated, while the HSPMs() is used to reconstruct the hcr components after all projections 
are completed (which is likely to be more efficient computationally, especially if it is not 
required!). 

The eight function names in the listing below are the names as defined in the code base of 
aMSE. The names used in each jurisdiction can be anything. The start of the call to 
do_MSE() illustrates how each of the following is an argument in the do_MSE() function and 
how this provides the opportunity to allocate each of these functions that are internal to 
aMSE to jurisdiction specific functions residing in an external source file or R package. The 
eight functions after hsargs, from hcrfun downwards, all need a definition within the 
jurisdiction’s R package or R source file, even if they only return NULL. Details are given 
below but are also available in the help for ?do_MSE. 

 

out <‐ do_MSE(rundir,controlfile, # needs a global definition 
              hsargs=hsargs,    # defined as global object, see above 
              hcrfun=mcdahcr,   # the main HS function from TasHS 
              sampleCE=tasCPUE, # processes cpue data, from TasHS 
              sampleFIS=tasFIS, # processes FIS data (see above), from TasHS 
              sampleNaS=tasNaS, # processes Numbers‐at‐Size data, from TasHS 
              getdata=tasdata,  # extracts data from zoneDP objects, from TasHS 
              calcpopC=calcexpectpopC, #spreads SAU acatch across populations 
              makeouthcr=makeouthcr, # generates updateable HS stats object 
              fleetdyn=NULL, # an optional function defining the fleet dynamics  
              scoreplot=plotfinalscores, # plots hcr and total scores from HS  
              plotmultflags=plotmultandflags,#plots TAC/acatch multipliers and  
                                             # meta rule flags 
              ... 
              ... 
       
) 

 

1. sampleCE() is used to sample or select data from the cpue predicted by the MSE. It 
should also include uncertainty (variability) from the predicted cpue by sau. The 
output from sampleCE should be the projected cpue data used by the HS function (see 
hcrfun). 

2. sampleNaS() is used to sample numbers-at-size data from the commercial catch if it is 
used in the HS. If such data is not used in the HS a function is still required but it can 
simply return NULL. The output should be the numbers-at-size data expected to be 
used by the HS function (see hcrfun). 

3. sampleFIS() is used to sample both cpue and numbers-at-size as if they came from 
fishery independent surveys. Again, if such data is not used then a function is still 
required but it can simply return NULL (as in tasFIS() immediately above). The 
output should be any FIS data used by the HS function (see hcrfun). 

4. getdata() calls the three sampling functions as arguments and must expect to receive for 
each sau, the projected years in each replicate of: 1) the predicted time series of cpue, 
the time series of expected catches, and a large object containing the expected 
distribution of the numbers-at-size in the commercial catches, the numbers-at-size in 
the population prior to fishing mortality, and the numbers-at-size in the population 
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after fishing mortality. The latter two would be needed if a fishery independent survey 
were to be used. The output from getdata() should be a list containing the data needed 
by the jurisdictions HS. It should take on the format that suits the programmer as it is 
they who will be writing the getdata and hcrfun functions. For example, in TasHS, 
the output of getdata() is a list of the cpue data used, the years used, and the 
aspirational catches in each sau. 

5. hcrfun() this is the function that represents the harvest control rule. It should take in the 
output from getdata() and whatever else it requires. It will likely use other functions 
from the HS file to conduct the calculations required to implement the harvest 
strategy and its harvest control rule. Its outputs must include, at least, a TAC for the 
simulated zone in the following year of projections, as well as the expected or 
aspirational catches for each sau. The Tasmanian HS generates aspirational catches 
for each sau and sums those to produce a TAC for the simulated zone. The South 
Australian HS only generates a predicted TAC so it could set the aspirational catches 
= NULL. Nevertheless, the simulation requires that the total catch is distributed 
among the available sau and this will likely require the dive fleet dynamics to be 
modelled so that how effort and subsequent catch is distributed can be estimated. 
Even where aspirational catches are estimated directly, when a fishery operates there 
is invariably noise associated with such caches and the actual catches by sau differ 
from the aspirational catches. The final required function is used to model what 
catches will actually be taken from each sau in the following projection year. In the 
outputs from the MSE, this is the difference between the acatch (aspirational catches 
per sau) and the catch (the actual catch per sau). 

6. calcpopC() a function that takes the output from the hcrfun (at least the aspirational 
catches and TAC) and estimates the actual catches per sau. This may entail 
application of some dive fleet dynamics to decide the distribution of catches/effort, as 
well as the application of noise to include uncertainty in the simulations. Even if 
management in a jurisdiction only generates a zone-wide TAC the projections require 
a method for predicting the actual catches taken from each sau (which then need to be 
distributed across each sau’s populations). 

7. makeouthcr() function (which by chance has an identical name in TasHS) should be 
designed to harvest the hcr scores while the projections are proceeding. This option 
sounds sensible but has the disadvantage that it will lead to large R objects, needed to 
store each iteration’s hcr outputs, being passed back and forth between aMSE and the 
external functions. If these objects become very large, which is very possible if the 
data includes the size-composition data, this will become very inefficient. 

8. fleetdyn() a function that defines the fleetdynamics used by aMSE to describe how the 
aspirational catches are then distributed across the sau. If not used, as is currently the 
case in Tasmania, then set this to NULL. 

9. scoreplot() plots the hcr scores and final scores. This will be unique to each 
jurisdiction’s harvest strategy and should be included in either the same source file or 
package as the harvest strategy itself, or a separate source file to be included when 
defining each scenario. 

10. plotmultflags() like scoreplot this will be unique to each jurisdiction’s harvest strategy 
and should be included in either the same source file or package as the harvest 
strategy itself. 
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12.3 Outputs from Each Harvest Strategy 

12.3.1 aMSE Implementation 

A typical scenario run of the aMSE software, after the initial setup of directories, and 
populating hsargs, might appear as follows: 

out <‐ do_MSE(rundir,controlfile,hsargs=hsargs,hcrfun=mcdahcr,   
              sampleCE=tasCPUE,sampleFIS=tasFIS,sampleNaS=tasNaS, 
              ...) 

 

The important part is the generation of the out object (a long list of result objects), which can 
then be used for plots and eventually within comparisons with other scenarios. 

The primary object relating to the harvest control rule performance is termed outhcr, as in 
‘output of the harvest control rule’. The different harvest strategies implemented in South 
Australia, Tasmania, and Victoria, all have different outputs from their harvest strategies. 

12.3.2 Tasmania 

outhcr for Tasmania is a list of eight 3D arrays of dimension projection_years x SAU x 
replicates. 

 g1s : num [1:30, 1:8, 1:250] 3.612 8.985 … gradient 1 scores 
 g4s : num [1:30, 1:8, 1:250] 6.074 6.171 … gradient 4 scores 
 targsc : num [1:30, 1:8, 1:250] 2.442 3.759 … target cpue scores 
 finalsc : num [1:30, 1:8, 1:250] 3.467 4.885 … final combined scores 
 index : num [1:30, 1:8, 1:250] 4 5 1 2 2 4 … TAC mult index from hsargs 
 catchmult: num [1:30, 1:8, 1:250] 0.85 0.9 … TAC multiplier value 
 metaflag : num [1:30, 1:8, 1:250] 0 0 0 0 0 0 … which metarule occurred 
 cetarg : num [1:30, 1:8, 1:250] 121 121 120 … the CPUE target 

12.3.3 South Australia 

outhcr for South Australia is a list of 12 3D arrays of dimension projection_years x SAU x 
replicates. The cesau and catch are included in their outhcr for convenience. 

 cesau : num [1:30, 1:8, 1:250] 100.5 94.4 113.9 34.9 45.2 … 
 CPUE_score : num [1:30, 1:8, 1:250] 0.607 0 2.519 0 0 … 
 FIS_score : num [1:30, 1:8, 1:250] NA NA NA NA NA NA NA NA NA NA … 
 Combined_score : num [1:30, 1:8, 1:250] 0.607 0 2.519 0 0 … 
 Score_carried : num [1:30, 1:8, 1:250] 0 0 0 0 0 0 0 0 0 0 … 
 catch : num [1:30, 1:8, 1:250] 16 7 0.619 0.621 2.292 … 
 prop_TAC : num [1:30, 1:8, 1:250] 0.0282 0.0267 0.0255 0.026 0.027 … 
 Weighted_SAU_score: num [1:30, 1:8, 1:250] 0.0171 0 0.0643 0 0 … 
 Zone_score : num [1:30, 1:8, 1:250] 0.972 0.298 1.077 0 0 … 
 Adjustment : num [1:30, 1:8, 1:250] 0.02 0.02 0.117 0.02 0.02 … 
 Base_TACC : num [1:30, 1:8, 1:250] 1141 1141 1141 1141 1141 … 
 TACC : num [1:30, 1:8, 1:250] 22.2 22.7 81.4 21 21.3 … 
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12.3.4 Victoria 

outhcr for South Australia is a list of 28 3D arrays of dimension projection_years x SAU x 
replicates. 

 Limit : num [1:30, 1:8, 1:250] 80 80 80 … 
 Thres : num [1:30, 1:8, 1:250] 120 120 … 
 Target : num [1:30, 1:8, 1:250] 170 170 … 
 Mean.CPUE.5 : num [1:30, 1:8, 1:250] 101.3 82.3 … 
 Mean.CPUE.4 : num [1:30, 1:8, 1:250] 82.3 78 88 … 
 Mean.CPUE.3 : num [1:30, 1:8, 1:250] 78 88 96.8 … 
 Mean.CPUE.2 : num [1:30, 1:8, 1:250] 88 96.8 … 
 Mean.CPUE.1 : num [1:30, 1:8, 1:250] 96.8 100.5 … 
 Mean.CPUE.0 : num [1:30, 1:8, 1:250] 100.5 94.4 … 
 CurrentStatus : chr [1:30, 1:8, 1:250] “Limit to Threshold” … 
 Years.At.Current.Status: num [1:30, 1:8, 1:250] 3 4 5 1 2 … 
 CCROld : chr [1:30, 1:8, 1:250] “1” “1” … 
 CCR : chr [1:30, 1:8, 1:250] “1” “1” … 
 yr4Gradient : num [1:30, 1:8, 1:250] 9.62 2.49 … 
 PrimaryIndicator : chr [1:30, 1:8, 1:250] “Increasing” … 
 yr2ratio : num [1:30, 1:8, 1:250] 3.8 -6.1 16.7 … 
 SecondaryIndicator : chr [1:30, 1:8, 1:250] “Stable” … 
 PrimaryCategory : chr [1:30, 1:8, 1:250] “Increasing” … 
 FinalCategory : chr [1:30, 1:8, 1:250] “Increasing” … 
 OT : num [1:30, 1:8, 1:250] 7 7.84 7.42 … 
 OT.lower : num [1:30, 1:8, 1:250] 7 6.66 7.05 … 
 OT.upper : num [1:30, 1:8, 1:250] 8.05 7.45 … 
 acatch : num [1:30, 1:8, 1:250] 7.84 7.42 … 
 TAC : num [1:30, 1:8, 1:250] 473 382 364 … 
 boundup : num [1:30, 1:8, 1:250] -5 -5 -5 -5 … 
 boundown : num [1:30, 1:8, 1:250] 5 5 5 5 5 5 … 
 boundratioup : num [1:30, 1:8, 1:250] -5 -5 -5 -5 … 
 boundratiodown : num [1:30, 1:8, 1:250] 5 5 5 5 5 5 5 … 

 


