
1

Management Strategy Evaluation for Abalone Fisheries

Malcolm Haddon

Updated on 20 April, 2025

Table of contents

Preface 6

What are Harvest Strategies? 6

Testing of Fishery Harvest Strategies 6

The Design of the aMSE R Package 7

The Intended Users 8

Living Documentation 8

Acknowledgements 9

1. Introduction 10

1.1 Fisheries Assessment and Management 10

1.2 Formal Recognition of Harvest Strategies 11

1.3 Properties of Harvest Strategies 13

1.3.1 Transparent 13

1.3.2 Repeatable 13

1.3.3 Adaptable 13

1.3.4 Defensible 13

2. Management Strategy Evaluation 14

2.1 Working with MSE 14

2.1.1 Simpler is Not Necessarily Better 15

2.1.2 Harvest Strategies 15

2.1.3 Management Strategy Evaluation of Abalone Fisheries 16

2.1.4 Difficulties Inherent with MSE Testing Abalone HS 17

2.1.5 Applications in Victoria 17

2.1.6 Why is the Code so Specialized 18

2.2 The Operating Model Structure 19

3. Using aMSE 21

3.1 A Worked Example 21

3.1.1 Requirements to Run aMSE 21

3.2 Running aMSE 22

3.2.1 Organize Scenario Results 22

3.2.2 A Possible Workflow 23

2

3.3 The Workflow in Practice 25

3.3.1 The Setup 25

3.3.2 Making the control and data files 26

3.3.3 The HS Package or JurisdictionHS.R File 27

3.4 Running do_Conditioning 28

3.5 Running do_MSE 29

3.5.1 Save Outputs for later Comparison 33

3.5.2 Home Page 33

3.5.3 Biology Page 35

3.5.4 Tables Page 35

3.5.5 Recruits Page 36

3.5.6 popprops Page 36

3.5.7 Production Page 37

3.5.8 NumSize Page 37

3.5.9 poptable Page 38

3.5.10 zoneDD Page 38

3.5.11 condition Page 40

3.5.12 predictedcatchN 42

3.5.13 OrigComp Page 42

3.5.14 popgrowth Page 43

3.5.15 projSAU Page 44

3.5.16 DiagProj Page 45

3.5.17 zonescale Page 47

3.5.18 Fishery Page 48

3.5.19 HSperf Page 49

3.5.20 scores 50

3.5.21 poplevelplots 51

3.5.22 phaseplot 52

4. Comparing MSE Scenarios 54

4.1 Introduction 54

4.1.1 The Example 54

4.2 Running the Three Extra Scenarios 55

4.3 Making Comparisons 62

4.3.1 Prepare the Analysis 62

4.3.2 Make the Comparisons 63

4.3.3 The Different Tabs 64

4.4 Further Developments 70

3

4.5 Appendix Structure of the output from do_comparison() 71

5. The Input Files 75

5.1 aMSE Requirements 75

5.2 File Locations for each Scenario 76

5.3 The Conditioning Requirements 78

5.4 The control_scenario.csv File 78

5.4.1 DESCRIPTION 79

5.4.2 START 79

5.4.3 zoneCOAST 80

5.4.4 ZONE 82

5.4.5 SIZE 83

5.4.6 RECRUIT 83

5.4.7 RANDOM 84

5.4.8 initLML 84

5.4.9 PROJECT 85

5.4.10 ENVIRON 85

5.4.11 PROJLML 86

5.4.12 CATCHES 86

5.4.13 CEYRS 87

5.4.14 SIZECOMP 87

5.4.15 RECDEV 88

5.5 The saudataEG.csv File 89

5.5.1 PDFs 89

5.5.2 Growth 90

5.5.3 LML 90

5.5.4 Weight-at-Size 90

5.5.5 Natural Mortality 91

5.5.6 Recruitment 91

5.5.7 Emergence 92

5.5.8 CPUE 92

5.5.9 Selectivity 92

5.5.10 Size-at-Maturity 92

5.5.11 cpue Hyper-stability parameter 93

5.6 propREC 93

6. Conditioning the MSE with the sizemod Package 95

6.1 Introduction 95

6.1.1 What Models are Possible? 96

4

6.2 Using sizemod as a Size-Structured Production Model 97

6.2.1 The Initial Parameters 100

6.2.2 The 5-Parameter Model Fit 100

6.3 The 35-Parameter Model Including Recruitment Deviates 105

6.3.1 Non-Linearity of CPUE 109

6.4 Initial Discussion 110

6.5 Final Adjustments once in aMSE 112

7. MSE Operating Model Structure 113

7.1 Model Dynamics 113

7.1.1 Model Initiation 114

7.1.2 Initial Depletion 115

7.2 Biology and Stock Related Statistics 115

7.2.1 Emergence 115

7.2.2 Selectivity 115

7.2.3 Growth 116

7.2.4 Weight-at-Length 117

7.2.5 Maturity-at-Length 118

7.2.6 Spawning and Exploitable Biomass 118

7.2.7 Catchability and CPUE 119

7.2.8 Annual Model Dynamics 119

7.2.9 Recruitment Processes 120

7.2.10 Larval Dispersal 121

7.2.11 Fleet Dynamics 121

7.2.12 Calculation of MSY 123

7.3 Model Output 123

7.4 Sampling from the Operating Model 123

8. Conditioning by Population 125

8.1 Summary 125

8.2 Introduction 125

8.2.1 Variables Important for Productivity and Yield 126

8.2.2 The Difference between Productivity and Yield 126

8.3 Methods 127

8.3.1 Relative Weighting of Data Sets 128

8.3.2 Conditioning the Operating Model at a Population Level 128

8.3.3 An Hypothetical Example 129

8.3.4 Other Details 131

8.3.5 Other Code Base Changes 132

5

9. Perturbations within Projections 134

9.1 Introduction 134

9.2 Methods and Results 134

9.3 Comparing Scenarios 137

10. References 139

11. Appendix: MSE Output Object Structure 144

11.1 Main Output R Objects from aMSE 144

11.1.1 glb : List of 19 145

11.1.2 ctrl : List of 13 145

11.1.3 projC : List of 5 146

11.1.4 condC : List of 7 146

11.1.5 condout : List of 2 146

11.1.6 zoneDD : List of 13 147

11.1.7 zoneCP : List of 56 147

11.1.8 zoneDP : List of 14 148

11.1.9 NAS : List of 2 148

11.1.10 sauout : a List 149

11.1.11 outzone : List of 12 149

11.1.12 outhcr 149

11.1.13 production 3D array 150

11.1.14 condout : List of 2 150

11.1.15 HSstats : List of 2 151

11.1.16 saudat : is an array of constants 151

11.1.17 constants : an array of constants 151

11.1.18 hsargs a copy of the hsargs 151

11.1.19 sauprod : a 7 x nsau matrix 152

11.1.20 scoremed 152

12. The JurisdictionHS File or Package 153

12.1 Use an R source File or an R Package? 153

12.1.1 Important Caveat 153

12.1.2 Where the Harvest Strategy is used in aMSE 153

12.1.3 Inclusion of a Jurisdiction’s HS 156

12.2 What Must be Included in the HS File or Package 158

12.3 Outputs from Each Harvest Strategy 161

12.3.1 aMSE Implementation 161

12.3.2 Tasmania 161

12.3.3 South Australia 161

6

12.3.4 Victoria 162

Preface
The aim of this document is to introduce and provide examples for using the Management
Strategy Evaluation (MSE) software encapsulated within the aMSE R package (and
associated required packages). While the aMSE package is aimed at abalone fisheries, it
could also be applied to any hard to age, spatially complex invertebrate fishery such as Beche
de Mer. Nevertheless, at least in this first edition, all examples will focus upon abalone
fisheries, both real and hypothetical.

What are Harvest Strategies?

Formal Harvest Strategies (HS) have three components, the data used by the HS, the analyses
or assessment used to produce the fishery performance measures and combine them if there
are more than one, and the harvest control rule used to translate the output or final score from
the analyses into a future catch level (Figure 1). They can be either model-based or empirical.
Integrated size-based assessment models can be used with abalone fisheries but generally
they tend to be managed using empirical harvest strategies, especially where an exploited
species does not meet dynamic pool assumptions.

Figure 1: A diagrammatic representation of the components of a formal Harvest Strategy (HS) as applied to Tasmanian
abalone SAU. The three fishery performance measures used are Grad1, Grad4, and TargCE, each based on CPUE (see
Bradshaw, 2018).

Testing of Fishery Harvest Strategies

At its heart, MSE is about testing harvest strategies using simulation. The need for such
simulation testing arises because while harvest strategies are invariably devised with the best
intentions to provide for sustainable fisheries management of profitable fisheries, even
relatively simple systems can develop what are termed unintended consequences. While
unintended outcomes can be benign, they can also lead to pathological behaviour, such as an
inability to increase or decrease total allowable catches when such changes are needed. It is
possible to apply new harvest strategies to real fisheries and discover their implications, both
good and bad in real time, over a possibly large number of years. However, it is less risky to

7

simulate the fishery and its management under alternative harvest strategies and, at very least,
eliminate the worst options while retaining those that appear beneficial. Enabling such
simulations is the intent behind producing aMSE.

The Design of the aMSE R Package

Apparently, when writing software, one should start with a very precise specification of the
intent of the software, which should define the inputs and how those are manipulated to
generate the outputs. Unfortunately, in our current ‘real’ world, in terms of abalone (and
every other hard-to-age, spatially complex invertebrate) it is clear that not everything that it
would be useful to know is already known. In addition, the software is intended to be
generally usable by, at least, all Australian abalone jurisdictions and this immediately meant
that the software needed to be flexible and adaptable. Thus, rather than starting with a precise
specification a more iterative design process was undertaken that could react to innovations
such as providing clear descriptions of such things as environmental perturbations.

The underlying population dynamics used to describe changes in the simulated abalone
stocks (extremely hard to age both consistently and accurately) was based upon following
how the numbers-at-size changed as a result of natural mortality, somatic growth, fishing
mortality, recruitment, and small amounts of larval movement. The spatial complexity
possible within each simulated fishery also had to be flexible and a scheme of sub-dividing
each simulated quota zone into a set of spatial assessment units, each of which could contain
a variable number of almost independent populations was adopted. The simplest arrangement
possible within aMSE is now a Zone with a single spatial assessment unit (sau) with only a
single population. The upper level of complexity has not been defined but in principle there
could be dozens of sau with hundreds of populations. In reality, the difficulties in relating the
simulation to a real fishery, i.e. conditioning the model on a real fishery is constrained by the
availability, and spatial scale, of information and data) will be what places a limit on the
spatial complexity adopted in any given case.

The focus of this document is upon the aMSE software but the requirement of maintaining
flexibility in its use led to the development of two new auxiliary R packages (see sizemod
and makehtml) and the further development of two others (see codeutils and hplot). When
conditioning the simulation model, so that it closely represents a real fishery, it was found
that in order to mimic the observed dynamics of the known history of a given fishery it was
necessary to estimate how recruitment varied through the time over which observations were
available. Initially, this was attempted within the aMSE software, and this option is still
available. However, it was eventually decided (iterative design) that a separate R package,
now called sizemod, should be written. This is used to fit a fully articulated size-based
integrated stock assessment model (Punt et al, 2013) to data available from each sau
separately. This permits an estimate of the productivity of each sau along with providing for
the best available description of the historical fishery data. Parameter settings optimized
through sizemod are then passed to aMSE. Once all sau are thus conditioned and adapted
within the aMSE framework, the MSE then projects that conditioned model forward under
the control of the alternative harvest strategies so that comparisons of the outcomes can be
made. As can be seen in the chapter titled Using sizemod to condition the SAU package, very
different outcomes from the modelling can be obtained simply by selecting different values
of natural mortality, steepness, and the hyperstability level of the CPUE. As none of these
values are known with any confidence it is not sensible to recommend using sizemod in a
formal stock assessment except, perhaps, in those SAU with large amounts of biological and
fishery information and in a weight-of-evidence context.

8

An important aspect of any harvest strategy is that it ought to be adaptable and open to
improvement. Hence, it was decided that the software code used to implement each
jurisdiction’s harvest strategy would not be built into aMSE but would rather be one of the
inputs from each jurisdiction. Initially, this took the form of what is known as a ‘source’ R
file but eventually, for Tasmania, this was converted into yet another a specific R package
TasHS (for the purposes of the examples in this guide an earlier version of the Tasmanian HS
was produced, EGHS, which is the one to be used with this guide). This also meant that HSs
developed by each jurisdiction could be maintained and managed more easily. It is
recommended that each jurisdiction that wants to use aMSE should develop such a package,
although the somewhat less efficient option of using a ‘source’ file of suitable functions
remains.

In addition, the other R packages that have been produced provide utility routines for general
programming (codeutils) and plotting routines (hplot), while the third (makehtml) provides
a convenient method for setting up internal websites that show the plots and tables of results
across a number of different pages/tabs, which enable examination of results from single runs
and comparisons. While this may all sound complex, worked examples in the pages that
follow should clarify how these things interoperate.

The Intended Users

MSE can be a complex business (Punt et al., 2016). aMSE is written entirely in base R (R
Core Team, 2024) and is open-source software. This means that anyone with a knowledge of
R can discover how it has been implemented. In addition, it can be further developed and
maintained by anyone with the correct expertise. But it does not have a nice shiny interface
(which would need to have had horrendously complex input screens). Because of this a
certain facility with the R language is required to run the software, though the threshold
requirement is relatively low, and template R code files are provided for running the software
(and can even be generated for a user by the software). Much of the difficulty or complexity
in use is setting up each simulation to represent a real fishery. It must be emphasized that
such representation (known as conditioning the operating model) need not always be highly
specific. Simulation software can be used to explore the implications of many somewhat
more abstract abalone-like fisheries rather than the specific Tasmanian western zone blacklip
abalone fishery used in the examples. Describing the conditioning of the simulation model is
an important part of this documentation.

One reason aMSE does not have a nice ‘shiny’ graphical interface is to retain a high degree
of flexibility during this phase in the evolution of this software. This implies that the user
needs to understand much of that flexibility to ensure they do not inadvertently represent the
fishery being simulated incorrectly. Ongoing developments are expected to include
increasing the number of diagnostics that will highlight assumptions and constraints.

Living Documentation

aMSE is not designed to be a fixed or static piece of software. It is expected that new plots,
tables, and other outputs will be produced by users and there is no reason these should not be
included in the code base for everyone to use. Having common outputs, plots, and tables
would make discussion and comparisons between jurisdictions and different users so much
easier. For this reason, the series of Quarto documents that make up this document have also
been placed onto a GitHub account, currently at
https://www.github.com/haddonm/aMSEGuide so they can be amended and improved
whenever required. This documentation should therefore always be considered a draft that

9

can be improved. It is available as a readable product at
https://haddonm.github.io/AMSEGuide/ from where a PDF of the whole can also be
downloaded.

Acknowledgements

Thanks are given for the funding for this project, which was primarily derived from both the
Australian Fisheries Research Development Corporation (FRDC Project 2019-118) and the
University of Tasmania. Further funding has been provided by the Abalone Industry
Reinvestment Fund (projects 2023-63 & 2023-65), which led to expansion and improvements
to the aMSE code-base.

10

1. Introduction

1.1 Fisheries Assessment and Management

One of the fundamental problems within fisheries management is that it is difficult to
measure the status of different harvested stocks directly because surveys are expensive and,
despite the cost, remain uncertain. Fortunately, it is generally possible to infer their status
from samples, or models fitted to data based upon samples, although these also only provide
an uncertain view of a stock. Happily, developing longer time-series of fishery observations
(such as catches, catch rates, age- or size-structure data, and many other types of observation)
can improve our understanding and modelling of events (assuming the quality and coverage
of such data is good enough - a very big assumption). Nevertheless, there always remains a
degree of uncertainty in any stock or fishery assessment. Such issues are of even greater
importance in the many data-poor or data-limited fisheries and species globally
(Vasconcellus and Cochrane, 2005; Pikitch et al, 2012). Despite the prevalence of
uncertainty, fishery managers are still required to make decisions. This uncertainty, and the
consequent difficulties it leads to, have not always been recognized (Smith, 1988) though
now the most effective fisheries management jurisdictions attempt to account for uncertainty
in explicit ways.

In the 19th century (and into the early 20th) many people believed that the exploitation of
natural resources did not require management. This idea, which should now hopefully seem
strange, has fortunately evolved into an acceptance that management of wild fisheries is
essential, and a wide array of management approaches are now being used around the World
(Smith, 1988; Hilborn, 2012). The objectives which systems of fisheries management attempt
to achieve have also greatly changed through time. When declines in large fisheries were first
identified at the end of the 19th century the focus mainly involved a combination of wanting
to maintain catch rates (so as to fish economically) and to maximize the yields from different
fisheries (Garstang, 1900). At that time the primary objective was to maximize yield, but it
took some years before it was recognized that for many species applying more fishing effort
did not necessarily lead to increased catches (the yield-per-recruit problem; Russell, 1931,
Beverton & Holt, 1957). It is difficult now to grasp the limited and simplistic view of how
fisheries ought to be managed that existed in the 1910s, and extended even up to the 1960s.
Larger scale attention only began to be paid to fisheries dynamics and management after the
late 1950s, with real progress only commencing in the 1980s onwards (Fournier and
Archibald, 1982; Methot, 1989, 1990).

Prior to the late 1950s most thought was given to increasing catches and the efficiency of
fishing gear and it still seemed contrary to intuition to recommend limiting catches. For
example, at the second FAO conference in 1946, immediately following the second world
war, the FAO was strongly urging the development of fisheries as a source of protein and
food: “The fishing grounds of the world are teeming with fish of all kinds. Fisheries are an
international resource. In underdeveloped areas especially, the harvest awaits the reaper.”
(FAO, 1985). The consequences of uninhibited fishing were poorly conceived at that time
and attempts to correct the outcomes of such misconceptions from that time are on-going.

Early deterministic stock assessment approaches effectively ignored uncertainty and tended
to produce management advice based on the assumption that natural populations are in
equilibrium with each other and with any fishing effort imposed on them (Schaefer, 1954,
1957; Gulland, 1965; Megrey, 1989). Assumptions of equilibrium and stability are clearly
only an approximation and are invalid in many cases but nevertheless this approach led to

11

concepts such as the Maximum Sustainable Yield (MSY), which related to catch levels, and
𝐹௫, the fishing mortality which related to the effort expected to lead to the maximum
yield. Unfortunately for many fisheries, catches relating to 𝐹௫ could be larger than the
MSY. Both these concepts were early fisheries targets or objectives, with fisheries legislation
in many countries still including MSY as a primary aim of management. Sadly, the same
legislation often neglects to define the concept of MSY (although this can be interpreted as an
advantage). In the 1970s it became apparent, following the collapse of a number of fish
stocks, that MSY, as it was then interpreted, was not the safest objective to adopt (Larkin,
1977) and more serious efforts were made to find safer alternatives.

Although the concept of MSY is still invoked it has evolved into use as an upper limit to
fishing mortality or has been redefined to account for risks of alternative catch levels (Smith
and Punt, 2001). In the 1970s and early 1980s, input controls relating to effort, gear, vessel
numbers, and closed seasons were the management tools in most fisheries and some of the
more successful management objectives focussed on defining an optimum fishing mortality
rate. This work led to the concept of 𝐹.ଵ, which despite being ad hoc, was an advance over
𝐹௫ in terms of sustainability as well as profitability. It usually led to a large reduction in
fishing effort (reduction in fishing mortality and costs) but only led to a minor loss in yield
(see Hilborn & Walters, 1992, for definitions of such classical fishery objectives). Even
though this was an improvement over 𝐹௫ or 𝐹௦௬ it was still based on the notion that fish
stocks were able to achieve equilibrium with the fishing mortality imposed on them. While
this was then assumed to be, at best, an approximation there was still a great deal of
development needed to produce the methodologies required for taking uncertainty into
account.

The importance of acting to provide management advice in the face of uncertainty was a
growing theme in fisheries resource management through the late 1980s and early 1990s. The
need to act before scientific consensus could be achieved rather than calling for more
research was identified as a key problem for management (Ludwig et al., 1993). The
precautionary approach in fisheries is based upon the notion that a lack of scientific certainty
about the risk of serious environmental damage must not be used as an excuse for not acting
to prevent that damage (FAO, 1995, 1996, 1997).

1.2 Formal Recognition of Harvest Strategies

As stock assessments became more sophisticated so were the management options that were
developed. In the late 1980s and early 1990s the effects of variability, uncertainty, and
associated risks began to be addressed in stock assessments (Francis, 1992) and the notion of
presenting a decision table of management options with their associated risks was also
developed. Hilborn & Walters (1992, p453) defined a harvest strategy as:

“…a plan stating how the catch taken from a stock will be adjusted from year-to-year
depending upon the size of the stock, the economic or social conditions of the fishery,
conditions of other stocks, and perhaps the state of uncertainty regarding biological
knowledge of the stock.”

The harvest strategies discussed at that time revolved mainly around the classical three:
‘constant catch’ (e.g. TACs; output controls), ‘constant fishing mortality’ (e.g. 𝐹.ଵ; input
controls), and ‘constant escapement’ (e.g. always leaving at least 75% of estimated Mackerel
Icefish biomass in the Heard and McDonald Island fishery; mixed input and output controls).

12

Harvest strategies in the early 1990s focused mainly on setting out fishery objectives
(defining biological reference points; Smith et al., 1993) and what constraints should be used.
In more recent parlance, this was about determining how to assess each stock’s status and
what limit and target reference points to put in place. These developments may have been
encouraged, at least in part, by new legislation in the USA (the Magnuson & Stevens Act,
1976, 2007) that required definitions of overfishing that would explicitly guard against
recruitment overfishing (Mace & Sissenwine, 1993).

A number of very influential documents were published by the FAO in the mid-1990s,
including: the Code of Conduct for Responsible Fisheries (FAO, 1995), the Precautionary
Approach to Capture Fisheries (FAO, 1996), and Fisheries Management (FAO, 1997); these
latter two documents being parts of the Technical Guidelines for Responsible Fisheries series.
The authors stated: “Long term management objectives should be translated into management
actions, formulated as a fishery management plan or other management framework” (FAO,
1995, p 11). Giving more details, the Guidelines appear to be one of the first documents to
describe the components of what are now termed Harvest Strategies.

The ‘Guidelines’ (FAO, 1996) identified the needs for:

1) targets, described as the desired outcomes for a fishery,

2) operational constraints or limits, described as the undesirable outcomes that are to be
avoided, and

3) control rules which specify in advance what action should be taken when specified
deviations from the operational targets and limits are observed.

Early work on simulation testing of management arrangements (now known as management
strategy or management procedure evaluation) appears to have contributed to this approach to
describing harvest or management strategies. Thus, in the FAO Guidelines it defines a
management procedure as a description of the data to collect, how to analyze it, and how the
analysis translates into actions. This is a standard way to describe a modern harvest strategy:
define the data needed, the analysis of status relative to the target and limit reference points,
and the control rules used to generate management advice from that status. However, in the
FAO guidelines the emphasis given to management procedures was placed on the
investigation of how uncertainties influenced the management process (which stemmed from
how these management procedures were implemented in South Africa; Butterworth & Bergh,
1993).

The main difference to fisheries management brought about by the adoption of formal harvest
strategies was the inclusion of explicit ‘decision rules’ or ‘harvest control rules’. Prior to the
introduction of harvest strategies, the data required for stock assessments was certainly
collected and the primary thrust of research was the development and articulation of
improved stock assessment methodology. Unfortunately, what to do with those assessments
to generate management advice sometimes varied from vague to completely unclear. With
the addition of formal control rules, management responses become predetermined based on
the outcome of the assessment. The use of a formal harvest strategy in a fishery represents a
major change to management and constitutes the primary basis for improving the consistency
or repeatability, predictability, and transparency of assessment and management.

13

1.3 Properties of Harvest Strategies

An advantage of using formal harvest strategies is that the outcome of their application
should not be dependent upon who applies them to data from a fishery. Given the same data
collected from a fishery, anyone who applies a given harvest strategy should produce exactly
the same management advice. In order for this to be the case requires harvest strategies, and
their implementation, to have the following properties:

1.3.1 Transparent

The information requirements of each harvest strategy and the objectives being aimed for
should be fully documented and publicly available. Assessments invariably use summarized
data so confidentiality should not become an issue. Where confidentiality might become an
issue (e.g. cpue standardization should use raw data from individual fishers), then formal
external, yet confidential, review can avoid this issue. Ideally, if software is used in the
application of the harvest strategy that too should be publicly available. Being open to critical
review is essential for there to be trust that the management being recommended is free from
potentially conflicted outside influence. All reviews take time, effort, and usually costs, so, in
potentially contentious cases, care should be taken to ensure that a review is not introduced to
delay decisions. One objective of every review should be to assess and maintain
transparency.

1.3.2 Repeatable

Given the same information and an understanding of the harvest strategy, anyone should be
able to generate the required management advice, and that advice should be the same
irrespective of who does the work. It should make no difference to the outcome who is in the
room when the work is completed and decisions are made. Transparency is critical to
achieving this goal, and the consequent repeatability of the outcomes from a formal harvest
strategy should instill greater confidence in the management objectives and management
actions.

1.3.3 Adaptable

A harvest strategy should not be seen as a static invention, it must be open to improvements
while retaining the properties of being fully and openly documented, and of being repeatable.
Fisheries management must have the capacity of learning and improving as understanding
concerning each fishery increases. Being open to review means that if an improvement can be
suggested, by anyone, then a change could be made. In addition, directional environmental
changes that have occurred in a noticeable manner over the last 50+ years mean that if
productivity changes with location, then changes in expectations and hence in the objectives,
targets, and limits for each fishery are also likely to need changing.

1.3.4 Defensible

The details and effectiveness of each harvest strategy must be defensible. Ideally, a harvest
strategy should be simulation tested for effectiveness at meeting their objectives (using
management strategy evaluation, MSE). Even in the absence of MSE, a harvest strategy’s
performance should be monitored and reviewed regularly. The defensibility of a harvest
strategy is also highly dependent on the other three properties. If they are not transparent,
repeatable, and adaptable, then they are less defensible.

14

2. Management Strategy Evaluation

2.1 Working with MSE

After many years of using what turned out to be overly simplified objectives for commercial
fisheries management, there has been a growing trend of explicitly defining the fishery
management policy to be used in each jurisdiction. These policies tend to address issues
relating to sustainability, managing risk factors, managing bycatch, and actions relating to
threatened and endangered species. This is a significant improvement over vague
exhortations to achieve the maximum sustainable yield for each species. In addition to the
explicit statements defining management objectives, there is a move to introduce explicit and
formal harvest strategies aimed at achieving those objectives. There are many possible
approaches to developing empirical harvest strategies, with no, as yet, clearly preferred
approaches. Unfortunately, unintended consequences are not uncommon when attempting to
control or manage relatively complex natural systems so, generally, to avoid potentially
disastrous outcomes, it is best to test and compare any new versions of an EHS and the
candidate alternative management arrangements before implementing them.

Comparing the relative effectiveness of alternative harvest strategies for particular fisheries
generally requires the use of Management Strategy Evaluation (Smith, 1994; Punt et al. 2001;
Haddon, 2007; Punt et al. 2016). As stated by Punt et al. (2016, p303):

“Management strategy evaluation (MSE) involves using simulation to compare the relative
effectiveness for achieving management objectives of different combinations of data
collection schemes, methods of analysis and subsequent processes leading to management
actions. MSE can be used to identify a ‘best’ management strategy among a set of candidate
strategies, or to determine how well an existing strategy performs. The ability of MSE to
facilitate fisheries management achieving its aims depends on how well uncertainty is
represented, and how effectively the results of simulations are summarized and presented to
the decision-makers. Key challenges for effective use of MSE therefore include
characterizing objectives and uncertainty, assigning plausibility ranks to the trials considered,
and working with decision makers to interpret and implement the results of the MSE.”

The simulations involve using a mathematical model to mimic both the biological and
fishery/fleet dynamics of the fishery being considered. This simulation model, usually termed
the Operating Model, is either fitted to a real fishery or conditioned (its parameters adjusted)
until its dynamic behaviour reflects the observed properties of a real fishery. Once
appropriately conditioned (easily stated, not necessarily simple to do), the dynamic behaviour
of the operating model is taken to represent reality and is used to simulate the operation of a
fishery under the different harvest strategies (HS) being compared or tested.

The essential aspect of such a simulation, that makes an MSE differ from a standard forward
projection of a stock assessment under constant catch or effort (a classical risk assessment;
Francis, 1992), is the built-in feedback of the regular management advice into the dynamics
described by the operating model. The dynamics of the stock and fishery are simulated each
year, the HS (data sampling, assessment/analysis, and harvest control rule) is applied
however often the HS dictates, and the outcome of the specific HS is fed back into the
operating model as a Total Allowable Catch or Effort, or some other management influence.
Such inputs could be expected to alter the path of the expected dynamics (this constitutes the
feedback loop). In this way, different HS can be expected to have different simulation
outcomes over a set number of years (see Figure 2.1).

15

Not all management strategy evaluations involve simulating a real fishery. There are many
general questions that can be answered using hypothetical fishery situations rather than
simulating a specific fishery. In some of the examples used in this documentation only a
portion of a real fishery is used, which is a mixture of realistic and unrealistic (because in
reality the fleet dynamics used relates to a whole quota zone not just one or two sau).
Nevertheless, such hypothetical situations can be used to explore the influence of different
source of uncertainty on differing harvest strategies.

2.1.1 Simpler is Not Necessarily Better

MSE is often represented in an overly simplistic fashion leading to un-realistic expectations
as in: ‘if a given harvest strategy has been MSE tested, and nothing untoward found, then it
must be good’. However, it is important to remember that, as with any model, if an operating
model does not include a particular feature in its dynamics (e.g. does not include depensation
in its recruitment dynamics, or non-linearity in the relationship between stock biomass and
CPUE) then those features can, obviously, never be expressed in the simulations. The
structure of an operating model needs to be well documented, and its limitations understood,
so that the domain of the MSE testing for each HS is known. This is especially important to
understand because harvest strategies that have been MSE tested are generally held in
relatively high regard. However, the completeness of any MSE testing will always be
constrained to the dynamics described by the operating model, so care in its design is
required and that design needs to be defensible (see Operating Model Structure).

2.1.2 Harvest Strategies

In the literature a harvest strategy (Smith, 1997), or HS, aimed at achieving a defined policy
objective, has a minimum of three components:

1. Specified and representative data collected from the fishery being evaluated,

2. An assessment or analysis of the fishery, based on the data collected, that estimates its
status relative to pre-defined target and limit reference points,

3. A formal harvest control rule (decision rule) that defines previously agreed
management advice (future catch or effort levels, etc) in response to a stock’s status
relative to its reference points.

Each of the three components can be varied in multiple ways and, strictly, each such
combination would constitute a different harvest strategy (HS). Therefore, for any fishery,
there will be multiple potential options available for the management. Often, fishery
management involves balancing trade-offs between conflicting objectives. For example, with
a valuable species such as abalone (e.g. blacklip abalone, Haliotis rubra) the two objectives
of maintaining a sustainable stock and maximizing the profitable catch are potentially in
conflict, or at least can be when considered across different time-frames. Such potential
conflicts within fisheries was one reason why management strategy evaluation was developed
to enable the comparison of how alternative harvest strategies perform relative to different
objectives. MSE methods originated in the International Whaling Commission, which had its
own contentious issues (Punt and Donavan, 2007). It is used to select or develop an optimum
HS, or at least reject sub-optimal ones.

16

2.1.3 Management Strategy Evaluation of Abalone Fisheries

There have been previous attempts to conduct management strategy evaluation (MSE) of
alternative harvest strategies for abalone fisheries in Australia (Haddon et al., 2013; Haddon
and Helidoniotis, 2013; Haddon and Mundy, 2016). In the current project, an R package
aMSE (Haddon, 2024) has been developed, and has evolved, from those earlier attempts.
This current document constitutes part of that documentation. Other complementary R
packages (codeutils, hplot, makehtml, and sizemod, (Haddon, 2024b, c, d, e), each with
their own documentation) have also been generated or modified from earlier versions to assist
with conditioning the operating model within the MSE, and the production of a standard set
of summary figures and model information.

An example R package EGHS has been developed that implements a simpler version of the
Tasmanian abalone harvest strategy in a manner useful for the examples described in this
guide (Haddon & Mundy, 2024b). Ideally, each jurisdiction that uses aMSE would
encapsulate their own harvest strategies into such a package, as this simplifies maintenance as
well as the use of aMSE. The required documentation within each formal R package for an
HS, and the possibility of including a vignette with more details, means that the workings of
the HS in each case could be explained and made clear. A formal package avoids the
possibility of source files of R functions being modified such that different users
inadvertently end up using a different HS structure. Maintenance and possible developments
within the code can also be managed more effectively when it is structured as a formal
package.

The R code in the aMSE package is a greatly developed and translated version of the
relatively undocumented Abalone MSE code developed and used in Haddon et al (2013),
which had been developed further, with only slightly better documentation, in Haddon and
Mundy (2016). The essential equations describing the operating model dynamics used in
those earlier projects were formally published in Haddon and Helidoniotis (2013). Those
dynamics have since been found to be overly complex in that they used separate vectors of
numbers-at-length to describe the cryptic and emergent components of each of the many
abalone populations simulated to make up a simulated quota zone. Other, unpublished, work
demonstrated that this separation has no real advantages for representing the stock dynamics
but does have serious computational disadvantages. The new aMSE package reflects this by
changing the previous equations so they now use only a single vector of numbers-at-length to
contain the dynamics for each year. In addition, other methods are being incrementally
implemented with the intent of speeding the computations. Previously, it could take hours to
appropriately explore even a single HS, which now, depending on the complexity of the HS,
can take only minutes to run a single scenario made up of several hundred replicate runs.

The underlying objective in the current aMSE R package is to enable the simulations and
MSE testing of different HS to proceed by users familiar with R, but without months of
introductory training with the bare software code-base, as needed previously. This document
is a first attempt to provide the background required for others to successfully run the
software. While writing this material, sections will be borrowed freely from both Haddon et
al (2013) and Haddon and Mundy (2016), wherever it is appropriate. These two projects, in
which abalone MSE code was first developed, did not include sufficient time or resources to
generate a more user-friendly or documented code-base for the software. Relatively user-
friendly software improves the capacity of other fisheries assessment scientists to apply these
methods to more stocks or to new HS currently being developed. By making the new R
package open-source, freely available, and fully documented, the intent and hope is that more

17

people will find the methods workable. By being defined within open-source software this
also allows for future developments of the package by others should they wish. One primary
objective is to allow users to write their own functions or R packages describing any new
harvest strategy they might develop.

2.1.4 Difficulties Inherent with MSE Testing Abalone HS

The phrase ‘abalone stock’ sounds meaningful and most would consider this to refer to the
standard notion of populations of a species having sufficient genetic homogeneity to
represent a connected reproductive whole. However, as demonstrated by Miller et al (2009;
2014), genetic studies indicate that abalone populations (at least of blacklip and greenlip
abalone) are meta-populations made up of multiple, what might be termed, micro-stocks.
Such micro-stocks are functionally independent, while remaining genetically connected such
that divergence is not occuring In effect, the management areas for which total allowable
catches (TACs) and minimum legal sizes (MLS or LML) are set are spatially recognizable
and convenient areas or zones that are composed of numerous mostly isolated micro-stocks.
The solution adopted in Haddon et al (2013) and Haddon and Mundy (2016) was to generate
an operating model made up of numerous discrete populations of abalone, each with their
own set of biological properties and fishery productivity that reflected properties observed
within real fisheries. One disadvantage of this approach was that there was no chance of
fitting this model to a real fishery as no real fishery has sufficient data available concerning
differences in growth, size-at-maturity, and other matters relating to productivity. This meant
that one could only attempt to condition the operating model to have outputs and properties
that approximately matched a real fishery. Of course, as those properties were defined at a
large geographical scale there would be no single or unique way of setting up a large number
of individual populations to mimic such emergent or sum-of-the-parts properties.

One time-consuming option to counter this problem would be to set up the operating model’s
underlying populations in a number of ways to determine whether each different arrangement
leads, effectively, to the same outcome. While this would be time-consuming it used to be the
only way available of characterizing the full uncertainty relating to the spatial dynamics.
There is now the possibility, however, that the use and collection of the GPS data-logger data
can assist with the conditioning of the operating model, by allowing populations at a smaller
scale to be more fully characterized, rather than at the scale of statistical reporting blocks
within quota zones. Now there are ten+ years of such data in Tasmania, this database has now
been used to define areas of persistent productivity that represent the multiple populations
used to define the spatial assessment units (SAU) within the quota zone. Using the longer-
term yield obtainable from each such smaller region as a proxy for their relative productivity
provides an insight into the required dynamics from each of these ‘populations’ (or ‘areas of
persistent production’). This is discussed in the sections dealing with conditioning the
operating model.

2.1.5 Applications in Victoria

During the research described in Haddon and Mundy (2016), an opportunity arose to apply
that abalone MSE to some individual reefs within Western Victoria to examine how recovery
might proceed under different harvest strategies following the viral destruction brought about
by the AVG virus (Haddon & Helidoniotis, 2014). This differed from the applications in
Tasmania as it was focussed solely on one reef complex, known as The Crags. While the
operating model was still only conditioned on reality (rather than fitted) using the biological
properties known for the abalone on The Crags, more time was spent improving the

18

comparison of the length composition and historical performance of the fishery. This could
be done by selecting combinations of simulated populations whose combined dynamics more
closely followed trends in catches and size-composition through time. However, this process
was very time-consuming, so the objectives of each study need to be made clear and explicit
before embarking on such detailed conditioning.

2.1.6 Why is the Code so Specialized

To date, one reason that running an MSE remains relatively specialized and esoteric is that
the simulation framework needs to be able to simulate a wide range of processes (see
Figure 2.1). These processes include a) the dynamics of the selected biological stock, b) the
dynamics of the fishery imposed on the stock (the fleet dynamics), c) the generation of
simulated fishery data from the fishery, d) the stock assessment or analysis applied to that
data, and e) the control rule used to modify the present management options. For abalone this
generally means changing the TAC, which is then fed back into the dynamics of the stock in
a feedback loop within the modelling framework (Punt et al, 2016).

Developing and using such a complex software framework entails specialized expertise. The
disadvantage of this is that it constrains its use with real fisheries and limits future
developments. This is the primary reason for attempting to translate the MSE code into a
documented R package. If more people can more easily take on the application of using the
management strategy evaluation framework to explore management options for abalone
stocks this should increase the chances of the adoption of improvements in management.

Figure 2.1: A diagrammatic representation of the main components of an MSE simulation framework, such as used with
abalone, and how the feedback cycle operates during the simulations. Redrawn from Haddon et al, 2013

19

2.2 The Operating Model Structure

The operating model (OM) requires conditioning on a selected abalone fishery because the
OM acts as a proxy for reality in the simulations. The task of the OM is to model the stock
dynamics across all the micro-stocks embedded in the framework. Currently, a selected
abalone fishery zone can have 10s or 100s of sub-populations, each with their own defined
properties reflecting somewhat different growth, maturity, and other details relating to
productivity. However, such a simulation would be extremely complex to condition to a
specific fishery simply because the data requirements would be enormous. To define the
operating model within the MSE, the number of populations (numpop in the R code) need to
be specified and how these are conditioned will, obviously, greatly influence the outcomes.

The original abalone MSE (Haddon et al, 2013) was designed for use with Tasmanian
blacklip abalone stocks. Spatially this was structured as statistical blocks within quota zones.
In Tasmania, quota zones were introduced from 2000 onward whereas the statistical blocks
have been extant since 1965 (Anon, 1966). Biological data was available from many sites
around Tasmania although it tended to be summarized at a block level. Each statistical block
could be simulated as containing multiple populations (areas of persistent productivity), and
each population has its own set of properties with many such properties relating to the
productivity. To attempt to capture some of the between block variations in biological
properties each block simulated was given its own set of average properties. These included,
for many of the properties, a definition of a statistical distribution to describe the expected
distribution of values across contained populations, for such things as the growth parameters,
the parameters relating to maturity-at-size, and details of the stock recruitment relationship.
Thus, each sub-set of populations (in Tasmania representing a statistical block but elsewhere
they might represent any spatial assessment unit), was sampled from selected distributions
that had been conditioned on what is known about the fishery being simulated. There is also
the option of specifying particular values of the productivity parameters (growth, maturity,
recruitment) for each ‘population’ (see the chapter on Conditioning on Populations).

Unfortunately, in fisheries management in general, and abalone fisheries in particular, the
terminology used to describe different management details and concepts is not standardized
across jurisdictions. Thus, while the term Zone is used widely to describe a geographical area
over which a particular quota/TAC may be taken, the names given to sub-zones within zones
differs between jurisdictions. The statistical block from Tasmania is not equivalent to the
reef-code from Victoria, although it is closer to the spatial assessment unit from South
Australia, though tend to be larger than the spatial management units in Central Victoria.
Similarly, in Tasmania, the phrase the Legal Minimum Length (LML) is used to define legal
size limits, which is equivalent to the Minimum Legal Length (MLL), and other such
abbreviations from other jurisdictions. In aMSE we have used Zone for the largest scale of
management, sau for the current spatial scale of assessment (sau can either be capitalized or
not), and LML for the legal minimum length. When using the MSE, people in different
jurisdictions should hopefully be able to manage any required translation without excessive
indignation; it is the concept that matters not the word or phrase.

In an operational simulated zone different SAUs are likely to have different numbers of
contained populations, and the populations are likely to be of very different sizes, each
population with its own particular properties. Within the Tasmanian application of aMSE, the
populations have been defined from the GPS data-logger information and are more akin to
‘areas of persistent productivity’.

20

Figure 2.2: A diagrammatic representation of a simulated zone made up of four spatial assessment units (SAUs) each made
up of a number of separate populations, each with its own properties. Redrawn from Haddon et al, 2013.

21

3. Using aMSE

3.1 A Worked Example

Rather than continue with theoretical considerations we will begin working through an
example MSE run in some detail. In this way users will see what actions are needed in
practice rather than deal with more abstract notions. During the development of the aMSE R
package for FRDC 2019-118, the Tasmanian western zone was conditioned on both
biological and fisheries data to provide for further development and testing of the software.
The summary data required are now included as default settings in the ctrlfiletemplate() and
datafiletemplate() functions. In addition, we can also use the data(lfs) internal data-set and
the function rewritecompdata() to generate the size-composition data required.

In this chapter, we will use these functions to produce a working example scenario that will
provide an overview of what is needed to use the software and what to expect to come out of
it when run. It is recommended that the help for each function and data-set mentioned in this
documentation be read for a fuller understanding of what is going on. For example, after
running library(aMSE), typing ?rewritecompdata, or whatever function name is of interest,
into the RStudio console - see the chapter A Non-Introduction to R in Haddon (2021) for
details about examining R code within a package. To read a list of all visible functions within
a loaded package, in the console type ?codeutils (or whichever package is of interest). Its
help screen should open. Scroll to the bottom and click on the ‘Index’ within [Package
codeutils version 0.0.16 Index] and a listing of each function and its title will appear. An
alternative approach is to use ls(“package:aMSE”) or ls.str(“package:aMSE”). The latter
also provides the syntax of each function.

3.1.1 Requirements to Run aMSE

Before running the example, it is, of course, necessary to install the required R packages
containing the software used. The following description will continue under the assumption
that the user will be using R with RStudio (see https://posit.co/). If some other development
environment is being used, then it will be assumed that the user will be able to adapt the
following to their own system.

It is necessary to install the following R packages (and their dependencies).

The first two can be downloaded from CRAN in the usual way. In RStudio, use the Packages
tab and click on Install, then type their names in the input box with a space between each one:

 rmarkdown required for the vignettes within aMSE.
 knitr required for the vignettes and for the kable function that is used in the output

.html files to generate readable tables.

Four packages specific to aMSE are required for all jurisdictions (aMSE, codeutils, hplot,
and makehtml). The first R package, aMSE is one of the outputs from FRDC project 2019-
118, codeutils and hplot are earlier packages that now contain extra functions added during
the execution of 2019-118. makehtml was developed for other uses and is simply used by
aMSE to generate the internal websites that display the results. In addition, a fifth user-
supplied package (or R-source file) is needed, which contains functions implementing the
Harvest Strategy for the jurisdiction of interest (see the JurisdictionHS_Requirements
chapter), here we will use the EGHS package. The four aMSE related R packages are
available through either installation or cloning from the GitHub account at

22

https://www.github.com/haddonm, or they can be installed from the build source files (ending
in tar.gz) located in the directory: dropbox/National_abalone_MSE/aMSE_files. Obviously,
the EGHS package is only required if the user is intending to use or explore the Tasmanian
harvest strategy.

 aMSE is the primary package for running the MSE, it contains the functions and some
data-sets that drive the MSE code-base.

 codeutils is a package containing (surprise) an array of utility functions used especially
when reading files, parsing text, and so on.

 hplot is a package containing functions written in base R to assist with plotting various
types of specialized graphics that aMSE uses.

 makehtml is a package used to automatically generate the HTML and CSS files that
make up the summary internal web-page for displaying the many results from single
scenarios using the MSE and, similarly, when comparing scenarios.

If installing from the R source files one would need to have copies of the latest version of
aMSE and dependent packages sourced using the GitHub link above (where the version
number is at least that shown or larger, which would imply more recent):

 aMSE_0.3.5.tar.gz,
 codeutils_0.0.15.tar.gz,
 hplot_0.0.19.tar.gz,
 makehtml_0.1.2.tar.gz, and, if using the Tasmanian HS,
 EGHS_0.1.15.tar.gz.

In RStudio, under the Packages tab one first presses the Install button and then uses the
install from option box that pops up (each users library location will likely differ):

Figure 3.1: The Install Packages interface from RStudio. The dropdown arrow is used to select ‘Package Archive File (.zip;
or .tar.gz)’, and then you browse to point the box at the required source file (R is now version 4.4.1).

3.2 Running aMSE

3.2.1 Organize Scenario Results

The number of possible scenarios it is possible to generate in a relatively short time is very
large so to facilitate making comparisons as simple as possible, it is best to be organized
about how to save the results for each scenario. The sub-directory name and path for all the
input files and the results that follow for a given scenario is named in the code as the rundir
(for hopefully obvious reasons). For example, in the text below we will introduce what will

23

be termed the ‘EG’ sub-directory (EG as in example). So, the rundir would be the generic
path leading to all the scenario sub-directories combined with EG/, the actual scenario in this
case. The scenario name EG/ is known as the postfixdir, while the generic path to all scenario
sub-directories is the prefixdir. On the computer in which this example is being developed the
prefixdir is, in fact, pathtopath(getDBdir(),“A_CodeUse/aMSEUse/scenarios/”) (note that
the R / sub-divider can, as usual, be replaced by the double backslash, \\, if that is preferred;
the getDBdir() function finds the path to the DropBox directory, to use a different prefixdir
then define it however you wish). The pathtopath() function combines the character strings
irrespective of what sub-divider is used or what each component starts with or ends with; In
each case the sub-dividers should not be mixed as in / with \\.

Graphically, this can all be represented, as an example, so that the prefixdir would be:

..DropBox/A_CodeR/aMSEGuide/runs

and sub-directories below the ‘runs’ sub-directory might be:

 runs/EG
 runs/EGM12
 runs/EGM3
 runs/EGMall
 ..

which indicates four sub-directories where EG is the example basecase where none of the
meta-rules are used. The meta-rules are used to modify the outcome of the analysis of the
three fishery performance measures to more closely match the desired HS objectives. In the
EGHS there are currently three meta-rules, each described later when comaprisons between
HS will be made. The EGM12 is where only meta-rules 1 and 2 are used, similarly EGM3
and EGMall are where meta-rule 3 only is used and all meta-rules are used, respectively. In
all cases natural mortality = 0.15, steepness = 0.7, and the hyperstability lambda = 0.75 (see
the chapters on conditioning the operating model to make sense of those parameters. These
four scenarios can then be compared to determine which had the most effects that best
matched the desired objectives of the harvest strategy. When dealing with Windows
machines a useful shortcut is to realize the classical “~” used by Unix and Linux systems,
refers to the user’s “Documents” directory. Thus, on my own computer, in R,
path.expand(“~”) gives rise to “C:/Users/Malco/Documents” (partly because Windows 11 is
pathetic and its default user directory cannot spell Malcolm). Of course, this being Microsoft,
one cannot rename either the default ‘user’ or the ‘Documents’ directories but it can be used
if required.

3.2.2 A Possible Workflow

Once the R packages are installed then a potential workflow might begin with these nine
steps (see the R code chunks below in Section 3.3 for code details):

1. For each scenario to be considered, select or create a directory somewhere in your own
system that will become the rundir within which the control file and the data files are
placed (and all the results will be written as separate files). The directory path
pointing to the different scenarios, each in their own rundir, is termed the prefixdir,
which in the example to follow will be
C:/Users/Malco/Dropbox/A_CodeR/aMSEGuide/runs/, but obviously a user will need
to set up their own directory structure. One then identifies a postfixdir, which is

24

appended to the prefixdir to form each rundir, so, initially, here we will have a
postfixdir = EG/. If one then uses the function confirmdir(), it either confirms that the
rundir exists or it asks whether you would want to create it, after which it creates that
sub-directory ready for your work. Again, read the function’s help for more options,
and/or use ?confirmdir. If the ‘ask’ argument is set FALSE then it will just create a
missing directory without asking, so check the spelling of your postfixdir first if you
use that confirmdir() option.

In the text below (section 3.3) there are example R-code blocks which can also be found in
the associated file. You will find such a directory, called EG, in the
Dropbox/National_abalone_MSE/aMSE_files/scenarios directory. You could copy that to the
location of your choice. In it you will also see a file called run_aMSE.R, which contains the
code as described across the code blocks below. Once the user has edited the directory
names, they could use that to run the MSE when the time comes. This file can be kept
anywhere convenient (I tend to keep it in the ‘runs’ or prefixdir sub-directory and modify
which subdirectory it points to for different scenarios.

2. Generate a draft control file for a scenario using the aMSE function ctrlfiletemplate()
(the default control file name is controlEG.csv). As it stands this sets up a system of 8
SAU with 56 populations distributed among them (as in the Tasmanian western
fishery MSE). In the EG subdirectory (rundir) this is called controlEG.csv (= Base
Case of natural mortality = 0.15, steepness = 0.7, lambda = 0.75, with 8 sau with a
total of 56 populations).

3. If necessary, edit the .csv file created by ctrlfileTemplate() to match the conditioning
data available for the fishery being simulation tested (here we will leave it as-is but
further details of each component in the control file are given in the The Input Files
and Conditioning the MSE chapters).

4. Generate a draft data file for the number of stock assessment areas (termed sau in the R
code) to be simulated using the aMSE function datafileTemplate(), being sure that the
data file name matches that pointed to in the control file (see the code blocks below,
but the default data file name is saudataEG.csv, as already described in the default
control file).

5. If necessary, edit the .csv file created by datafileTemplate() to match the conditioning
data available for the fishery being simulation tested (here, again, we will leave it as-
is but, once again, further details are given in the The Input Files and
Conditioning_the_MSE chapters). Descriptions of each entry in the control and data
files are given in the The_Input_Files documentation.

6. A second data file of size-composition data is required if the user wants to compare the
predicted size-composition of catches against those observed during the operating
model conditioning. Here, such a file is generated using one of the internal data-sets
to produce a file called lf_WZ90-20.csv, implying length frequency data from the
western zone for years 1990 to 2020, with some missing years (again this file can be
found in EG in the Dropox/National_abalone_MSE/aMSE_files/scenarios directory),
but the code used to generate it is given below.

7. Each jurisdiction in Australia currently has very different harvest strategies with very
different requirements. To allow for these differences a list of HS related properties is
input to the software so that each HS can operate appropriately. This list was named

25

hsargs (obviously short for harvest strategy arguments). Each harvest strategy needs
to have detailed documentation regarding what arguments are required. An example
for Tasmania is given in the code blocks below. See also the Appendix in this
aMSEGuide (Haddon, 2024a).

8. From this point there is a choice of running either the do_condition() or the do_MSE()
functions. The first reads in the control and two data files, generates the equilibrium,
unfished simulated zone and then conditions the operating model on any available
fishery data (catches, indices of abundance, size-composition data). It then tabulates
and plots up the conditioned result to enable the success of conditioning on a real
fishery to be determined This is used when adjusting the conditioning of the model to
a fishery. The do_MSE() function does all that the do_condition() function does, but
then also conducts the projections under control of the harvest strategy whose
definition is contained in the EGHS R package (of whichever harvest strategy is
being used). Before running do_MSE() for the first time for a new fishery it is best to
run do_condition() repeatedly so that the conditioning can be adjusted prior to making
more formal MSE scenario runs for later comparisons. Here we could forego that step
as the template files reflect a pre-conditioned base-case scenario for the western zone
blacklip fishery in Tasmania.

9. Finally, one uses the makeoutput() function, which plots and tabulates the results, and
produces the HTML and CSS files, into the defined rundir and has the option of
opening the internal web-page ready for inspection. The R objects output by
do_MSE() can be very large (~1.8Gb for 250 replicates if the includeNAS (include
numbers-at-size) argument is set = TRUE) so it is best to save that to a fast hard drive
which is not synced to a cloud somewhere (ie NOT DropBox, and absolutely not to a
shared DropBox folder, or at least not one shared with me). However, a run of 250
replicates using the Tasmanian HS currently takes about 2.9 minutes (on an Asus
Zenbook S with an Ultra 7 processor) so repeating scenarios is not overly onerous.
Keep in mind that comparisons are done with saved results.

As will be seen in the code chunks below, this whole process sounds more complex than it is
in practice.

3.3 The Workflow in Practice

3.3.1 The Setup

As usual, if a user is unfamiliar with a function then use ?function-name to get help on what
it does and what its arguments are. Alternatively, just type function-name in the console (with
no following brackets) and the function’s code will be printed to the console for inspection or
try args(function_name) for just a listing of the arguments.

Diagrammatically, the process of running the aMSE software can be summarized as in
Figure 3.2, although a verbal description and example R code are also given below.

26

Figure 3.2: Diagram of the sequence of actions or steps required to run the aMSE software for a given scenario.

First one sets up R options (if desired), calls the required libraries, and sets up the directory
information:

options("show.signif.stars"=FALSE, # some R options I find helpful
 "stringsAsFactors"=FALSE, # now a default in R4
 "max.print"=50000,
 "width"=240)
suppressPackageStartupMessages({ # declare libraries ‐‐‐‐‐‐‐‐‐‐‐‐‐
 # this is the minimum, of course others can be added if desired
 library(aMSE)
 library(EGHS) # obviously only if using the Tasmanian HS
 library(codeutils)
 library(hplot)
 library(makehtml)
 library(knitr)
})
OBVIOUSLY, modify the rundir definition to suit your own setup!!!
prefixdir <‐ pathtopath(getDBdir(),"A_codeR/aMSEGuide/runs/")
postfixdir <‐ "EG" # a descriptive name for the rundir
rundir <‐ pathtopath(prefixdir,postfixdir) # define rundir
startime <‐ Sys.time() # to document the time taken
verbose <‐ TRUE # send messages to the console about the run progress
controlfile <‐ paste0("control",postfixdir,".csv") # match control file name
outdir <‐ "C:/aMSE_scenarios/EG/" # storage on a non‐cloud hard‐drive
confirmdir(rundir,ask=FALSE) # make rundir if it does not exist

c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EG already exists

confirmdir(outdir,ask=FALSE) # to be interactive needs ask = TRUE

C:/aMSE_scenarios/EG/ already exists

3.3.2 Making the control and data files

Now we can generate the control and the two data file using aMSE template functions. If
these files already exist then, obviously, we do not need to run this code again.

27

controlfile <‐ "controlEG.csv" # default example file name, change it as needed
Now make the controlfile. Read the help file using ?ctrlfiletemplate. This
explains what the devrec argument is all about.
ctrlfiletemplate(indir=rundir,filename=controlfile,devrec=0)
Within controlfile, the default data file name is 'saudatapostfixdir.csv'. If
you want to call it something else (maybe aloysius.csv or machynlleth.csv?)
then edit the seventh line of the controlfile that holds the definition
of the name of the SAU data file, and change it in this code.
datafiletemplate(indir=rundir,filename="saudataEG.csv")
The program also needs some length composition data. For this we are going
to use one of the inbuilt data‐sets called 'lfs' (see its help). The default
filen is already written into the controlfile. Change that as necessary.
data(lfs)
writecompdata(indir=rundir,lfs,filen="lf_WZ90‐20.csv")
dir(rundir) # listing the contents of rundir can be a useful check

I recommend that you take a look at the contents of these newly generated files (either in
RStudio or Excel, though Excel is best avoided), which will be found in EG, but, for now, do
not alter anything, although if you do (perhaps the data file name) be sure to re-save it as a
.CSV file and not an .XLSX file. Full details of these files are given in the The Input Files
section of the documentation. For now, the user should know that the scenario includes a
natural mortality = 0.15, a recruitment steepness = 0.7, and a cpue hyper-stability lambda =
0.75. The latter implies that the dynamics are affected by hyper-stable CPUE rather than the
more classical assumption of a linear relationship between CPUE and exploitable biomass
(the assumption of linearity may be common and classical, but it is incorrect for abalone and
lots of other species).

3.3.3 The HS Package or JurisdictionHS.R File

Here we are using the EGHS R package, and the default hsargs (see code chunk below). If
an R package has been developed that implements a harvest strategy for a specific
jurisdiction, it will need its own set of hsargs. The functions that are used to define the
harvest strategy being tested can be read in via a source R file, or if an R package exists, the
relevant library(s) loaded.

In Tasmania, the HS is included in a package called EGHS, and this
contains all the required functions.
Alternatively use source(“pathtoafilecontainingtheHSfunctions.R”)
But, if the EGHS package is used instead of a source file, we still need
the global object hsargs, which contains the settings used by the the
Tasmanian HS. For details of hsargs, see the documentation for ?EGHS or
for whichever HS you are exploring.

hsargs <‐ list(mult=0.1, #expansion factor for cpue range when calc the targqnt
 wid = 4, # number of years in the grad4 PM
 targqnt = 0.55, # quantile defining the cpue target
 maxtarg = c(150,150,150,150,150,150,150,150), # max cpue Target
 pmwts = c(0.65,0.25,0.1), # relative weights of PMs
 hcr = c(0.25,0.75,0.8,0.85,0.9,1,1.05,1.1,1.15,1.2), # hcr mults
 hcrm3 = c(0.25,0.75,0.8,0.85,0.9,1,1.1,1.2,1.25,1.3),# mr 3
 startCE = 2000, # used in constant reference period HS
 endCE = 2019, # used in constant reference period HS
 metRunder = 0, # should the metarules be used. 0 = No
 metRover = 0, # use metarules 0 = No
 decrement=1, # use fishery data up to the end of the time series

28

 pmwtSwitch = 0, # n years after reaching the targCE to replace
 stablewts = c(0.8, 0.15, 0.05), # pmwts with stablewts mr3
 hcrname="constantrefhcr", # the name of the HCR used
 printmat=NULL) # something needed for some HS, not TAS

If using a jurisdictionHS.R source file, then it needs to contain a number of specific functions
and constants, even where some may, in fact, do nothing:

tasFIS <‐ function(x) { # currently no FIS data is used in TAS
 return(NULL) # though this may change
}

For full details see the JurisdictionHS_Requirements section.

3.4 Running do_Conditioning

Once setup with all the required files and packages, one would normally attempt to condition
the model by changing input parameters so that it generates simulated dynamics that more
closely follow those observed in the real fishery. For example, it is possible to modify
recruitment deviates in particular years, which would modify the available exploitable
biomass in later years, which, in turn, will change the predicted CPUE and associated size-
composition of catches, with the intention of improving the match between the observed and
that predicted by the operating model. However, if, when running the ctrlfiletemplate
function, you used the devrec=0 argument (as we did), then the recruitment deviates for the
western zone, under a scenario of natural mortality M = 0.15, recruitment steepness = 0.75,
and a hyperstability parameter lambda = 0.75, have already been optimized using the
sizemod size-based modelling package to provide the best statistical fit between the observed
and predicted CPUE and the observed size-composition of the catch and that predicted by the
model (see Using_sizemod_to_condition_the_SAU).

Despite having the operating model already conditioned, here we will run the code needed to
condition the model on the historical data to illustrate what the outputs will look like. The
code in the next block automatically generates a set of web-pages using HTML and CSS to
layout and display the results. If you run this code while having Windows Explorer (or
whatever equivalent you are using on your machine) open on your rundir you should see the
generation of an array of files prior to the web-pages being opened automatically in a
browser. If you were to set the argument openfile = FALSE then the browser would not be
activated, but you could open it all by double clicking on the EG.html file within the EG
directory. Alternatively, one can enter, into the RStudio console,
browseURL(pathtopath(rundir,“EG.html”)).

prodout <‐ FALSE # no estimation of production properties saves time but
this runs the MSE on a control rule that uses no meta‐rules. It will be
compared with scenarios that include meta‐rules in a later example.
out <‐ do_condition(rundir,controlfile, # controlfile defined above
 calcpopC=calcexpectpopC, # from EGHS
 verbose = TRUE,
 doproduct = prodout, # prodout=FALSE, no details re MSY
 dohistoric=TRUE,
 matureL = c(70, 200), # length range for maturity plots
 wtatL = c(80, 200), # lengths for weight‐at‐length plots
 mincount=120, # minimum obs for including length comps
 uplimH=0.35, # not used because doproduct=FALSE
 incH=0.005,

29

 deleteyrs=0, # all length comp years used
 prodpops=NULL) # no individual pop producivity plotted

All required files appear to be present
Files read, now making zone
Time difference of 0.7189279 secs

Conditioning on the Fishery data

makeoutput(out,rundir,postfixdir,controlfile,hsfile="EGHS Package",
 doproject=prodout,openfile=TRUE,verbose=FALSE)

The local web page displaying the output has a number of tabs. The condition tab illustrates
the match between the observed cpue and that predicted by the operating model, while the
predictedcatchN tab illustrates the match between the observed size-composition of the
catches and the predicted values. It is clear that those sau with small sample sizes of size-
composition data only have a relatively poor model fits in some years.

Each of these tabs are repeated when running the do_MSE() function so more detailed
descriptions of each tab will be given in the next section where the MSE will be run using the
default Tasmanian harvest strategy. Note that the main page is named ‘EG’, which reflects
the fact that the scenario webpage top-lvel tab is named after the postfixdir.

3.5 Running do_MSE

Once conditioning the model has been completed to the degree desired, one can run
projections for a specific management scenario with the simulated abalone zone’s
management being determined by the harvest strategy as implemented in EGHS (see the
discussion concerning the spectrum of options relating to conditioning operating models and
how that related to the specific objectives of the simulation testing being undertaken).

If one keeps an Explorer window open looking at rundir, the addition of different files can be
watched in real time. The MSE can be run using the following code (I suggest you examine
the help files for any functions new to you). do_MSE() provides notifications to the console
about the progress of calculations if ‘verbose=TRUE’ is set. The checkhsargs() function is
defined to examine hsargs but is only valid for the TAS EHS. Any other jurisdiction would
need to write an equivalent function to interact with their own HS and hsargs requirements.

checkhsargs(hsargs) # lists chosen options before run, only for TAS

The hcr being used is: constantrefhcr
hsargs$startCE and hsargs$endCE are used to define the reference periods
for each sau

?do_MSE provides more detailed descriptions of each function argument
see EGHS package for help with the HS functions
do_MSE function can take a few minutes to run so be patient
out <‐ do_MSE(rundir,controlfile, # already known
 hsargs=hsargs, # defined as global object
 hcrfun=constantrefhcr, # the main HS function
 sampleCE=tasCPUE, # processes cpue data
 sampleFIS=tasFIS, # processes FIS data (if any)
 sampleNaS=tasNaS, # processes Numbers‐at‐Size data
 getdata=tasdata, # extracts the data from the zoneDP object

30

 calcpopC=calcexpectpopC, #distributes catches to populations
 makeouthcr=makeouthcr, # generates updateable HS output object
 fleetdyn=NULL, # only used in SA and VIC so far
 scoreplot=plotfinalscores, # a function to plot HS scores
 plotmultflags=plotmultandflags, # function to plot multipliers
 interimout="", # save the results after projecting,
 varyrs=7, # years prior to projections for random recdevs
 startyr=48, # in plots of projections what year to start
 verbose=TRUE, # send progress reports to the console
 ndiagprojs=4, # individual trajectories in DiagProj plots
 cutcatchN = 56, # cut size‐at‐catch array < class = 112mm
 matureL = c(70, 200), # length range for maturity plots
 wtatL = c(50, 200), # length range for weight‐at‐length plots
 mincount = 120, # minimum sample size in size‐composition data
 includeNAS = FALSE, #include the numbers‐at‐size in saved output?
 depensate=0, #will depensation occur? see do_MSE help for details
 kobeRP=c(0.4,0.2,0.15), # ref points for a kobe‐like phase plot
 nasInterval=5, # year interval to use when plotting pred NaS
 minsizecomp=c(100,135), #min size for pred sizes, min for catches
 uplimH=0.35,incH=0.005, #H range when estimating productivity
 deleteyrs=0) # all length comp years used

All required files appear to be present
Files read, now making zone
Now estimating population productivity between H 0.005 and 0.35
makeequilzone 25.24291 secs

Conditioning on the Fishery data
dohistoricC 1.205479 secs

Conditioning plots completed 1.575177 secs

Preparing for the projections
Projection preparation completed 10.94988 secs
Doing projections
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
2045 2046 2047 2048 2049 2050
All projections finished 1.51891 mins
Now generating final plots and tables
Starting the sau related plots

Finished all sau plots 14.65523 secs
Starting size‐composition plots

Finished size‐composition plots 6.194708 secs

Plotting fishery information

hsargs.txt saved to rundir
plotting HS performance statistics

plotting Population level dynamics

All plots and tables completed 16.06431 secs

31

You could check out the list of files in rundir using dir(rundir). If the numbers-at-size are
saved (includeNAS=TRUE) the out object can be gigabytes rather than megabytes. Best to
only use this option when making a final scenario run.

The do_MSE() function currently requires 29 input parmeters.The rundir and controlfile were
defined earlier, the remaining 27 arguments are new and are described in the help page for
do_MSE() (?do_MSE).

A flag can be set (verbose) to determine whether to have updates on progress sent to the
console as they were above. This can be helpful, especially during development. While you
should examine the help for do_MSE() some of the more important arguments will be
considered here. The function makes great use of R’s ability to use function names as
arguments to other functions. In that way, while we have standard names for functions within
do_MSE() one can point each of those to custom functions devised for each jurisdiction’s
approach to managing its abalone stocks. Just as each jurisdiction will require hsargs to have
a different set of components, the arguments listed here all require functions to be written for
each jurisdiction to match the requirements of each HS.

• hcrfun=constantrefhcr, is the main function driving the HS. It gathers all the inputs and is
expected to output everything wanted from the HS. In the case of Tasmania, the minimum
would be the acatch for each SAU. In fact, many more outputs are output and stored (in
outhcr) so that the HS performance can be plotted and monitored.

• sampleCE=tasCPUE, controls how the CPUE data from the simulations are smapled and
processed prior to use within the HS (see the R code by typing tasCPUE into the console with
no following brackets).

• sampleFIS=tasFIS, similarly this function would process any FIS data is any were available.

• sampleNaS=tasNaS, processes the Numbers-at-Size data from the populations to generate
the predicted number-at-size in the catch.

• getdata=tasdata, extracts the data from the zoneDP object, which is used to hold the
dynamics of the dynamic zone during projections.

• calcpopC=calcexpectpopC, once the acatch (or TACC) is known then this function is used
to distribute that catch across the populations within each SAU (needed even where
management does not use SAU scale catch allocation.

• makeouthcr=makeouthcr, this is used in the function doprojections where it is input into
hcrfun (here that is constantrefhcr), which outputs an updated version. A the end of the
projections it will therefore contain all the outputs from hcrfun ready for characterization.

• fleetdyn=NULL, where the default fleet dynamics is not used (which predicts the catch
from each SAU based on available exploitable biomass plus noise) this is where a custom
function can be input (this is needed in South Australia)

• scoreplot=plotfinalscores, a jurisdiction specific function to plot HS scores

• plotmultflags=plotmultandflags, a function to plot eh catch multipliers as implemented in
each jurisdiction.

32

When you run this do_MSE() code, in fact it will be doing rather a lot of work, even though
in this instance it is only running 100 replicates (more normally do 250 or 500). Apart from
the results contained in the multiple .png files (plots), .csv files (tables), and some other .csv
files, all the results can be found in the out object associated with the do_MSE() statement.

str1(out) # function from codeutils = str(out,max.levels=1)

List of 29
 $ tottime : 'difftime' num 2.572
 $ runtime : POSIXct[1:1], format: "2025‐04‐17 16:26:03"
 $ starttime : POSIXct[1:1], format: "2025‐04‐17 16:23:29"
 $ glb :List of 20
 $ ctrl :List of 13
 $ zoneCP :List of 56
 $ zoneD :List of 14
 $ zoneDD :List of 14
 $ zoneDP :List of 14
 $ NAS : NULL
 $ projC :List of 5
 $ condC :List of 15
 $ sauout :List of 10
 $ outzone :List of 13
 $ production : num [1:71, 1:6, 1:56] 256 245 235 225 216 ...
 $ condout :List of 2
 $ HSstats :List of 2
 $ saudat : num [1:32, 1:8] 21.5 0.3 130 1 54.3 ...
 $ constants : num [1:33, 1:56] 6 21.5 0.3 130 1 ...
 $ hsargs :List of 16
 $ sauprod :List of 3
 $ zonesummary :List of 2
 $ kobedata : num [1:8, 1:4] 0.33 0.449 0.259 0.242 0.313 ...
 $ outhcr :List of 8
 $ scoremed : num [1:30, 1:7] 42.8 35.4 31.5 31.3 33.4 ...
 $ popmedcatch :List of 8
 $ popmedcpue :List of 8
 $ popmeddepleB:List of 8
 $ pops : num [1:56, 1:26] 1 2 3 4 5 6 7 8 9 10 ...

Many of these objects are lists and so one might use str() or str2() to examine their
structure and contents, but this has been done for you in the R_Object_Structure_of_Output
section of the documentation (though you could/should still try it yourself). The many plots
and tables produced remain only a start. Any number of further plots and tables can be
produced from what is already there but especially when alternative scenarios are compared.
So, knowing the object structure of what comes out is extremely helpful.

Most of the analyses we can see are conducted at the primary grouping level (i.e. the sau
level for EGHS). Thus, the main objects for initial study would be the sauout, NAS, outzone,
and even the zoneDP objects (population level dynamics). See the
R_Object_Structure_of_Output section for more details.

You should run the dir(rundir) to see how many files have been created by the MSE ready
for use.

33

We can now construct the internal web-page to display results. If you set the argument
‘openfile=TRUE’ then the internal website will open automatically. If set to FALSE then you
would need to open the rundir and double-click the scenario html file. For example, if your
scenario is called EG then you would click on EG.html, alternatively, one can enter, into the
RStudio console, browseURL(paste0(rundir,“.html”)), which will automatically use the latest
analysis conducted into rundir.

makeoutput(out,rundir,postfixdir,controlfile,
 hsfile="EGHS Package",openfile=TRUE,verbose=FALSE)

Obviously, this is a multi-faceted summary of what has been done. It includes the pages from
do_condition plus many more.

3.5.1 Save Outputs for later Comparison

The primary intent of the aMSE software is to make comparisons between alternative harvest
strategy scenarios. For this it is necessary to save the out objects (which, without the NAS
object are hundreds of mega-bytes and with the NAS object can be giga-bytes). Because of
their size it is best to store these on a local and fast hard drive so that when making
comparisons the separate out object for each scenario can be examined and the outcomes
compared. Here we illustrate the required R code and we will use the results later in the
documentation when comparing the basecase with alternatives.

save(out,file=pathtopath(outdir,paste0(postfixdir,".RData")))

3.5.2 Home Page

The Home tab contains lines of information concerning the particular scenario run of the
MSE. This information includes the directories used, the files used, some details of the run
(number of replicates, years projected, number of populations and sau) but especially the
randomseed used when generating the different populations within the sau. If that
randomseed, which is set in the controlfile, is altered one would expect the complete
conditioning to be different as many of the properties of each population would change
slightly. What this number does is ensure that the same simulated zone is generated each time
a scenario is run.

34

Figure 3.3: The home page of the internal web-site generated from the results of the do_MSE R function from aMSE. Of
course, your own will differ from this in the details but all the tabs should be there.

In the following pages are a wide variety of results and outputs but, of course, any number of
extra, additional, or alternative plots and tables could be included on each page (although that
would entail updating the do_MSE() function, or functions it refers to). Each figure and table
caption contains the name of the .png or csv file from which it is produced should the figure
or table be needed for any other purpose. Clicking on any figure will enlarge it for ease of
examination (use the return arrow at top left in the browser to return to the original page). In
the sections below describing each tab a figure is given illustrating at least one plot from each
tab. See the respective tab for the related caption.

Figure 3.4: A view of a browser page where a particular figure has been enlarged by clicking on it (here most of it is
obscured to the right). Use the highlighted arrow to return to the ordinary scale view.

35

3.5.3 Biology Page

This contains plots of the maturity-at-length curves, weight-at-size curves, and emergence-at-
size curves for each population in each SAU. For each metric, there is a pane of plots for each
SAU, each of which contains indicators for every population in that SAU

The final eight histograms of biological properties illustrate the variation among population’s
for their values of natural mortality, M, the MaxDL, L95 and L50 growth parameters across
all SAU and populations. There are also histograms of each population’s MSY, steepness,
and the biological LML (size-at-maturity plus two years’ growth. Finally, AvRec, the
unfished recruitment, are also variable, but this reflects the fact that in each sau only a
proportion of the total sau AvRec is allocated to each population. There is almost no random
variation in the AvRec values between R runs as the standard deviation is set to 1e-05 in each
case (because the AvRec value is fitted within sizemod.

Figure 3.5: The distribution of various biological properties across the 56 populations.

3.5.4 Tables Page

Currently, this holds only two tables, the first being the productivity properties of each sau
(B0, MSY, etc), and the second being the tabulated contents of zonebiology.csv. This

36

represents the various actual values for an array of biologically important variables (including
those plotted as histograms on the Biology page), all by population. The input constants for
population biological properties are derived from adding random variation to the SAU scale
property values.

Table 3.1: SAU properties relating to recruitment and productivity.

 sau6 sau7 sau8 sau9 sau10 sau11 sau12 sau13

R0 258881 461928 239640 1058383 836448 1720648 1546067 583240

B0 438.882 872.171 524.479 2438.878 2071.964 4152.789 3126.261 915.911

ExB0 414.822 845.227 522.023 2450.284 2117.053 4164.472 3203.565 869.511

MSY 20.283 43.738 24.955 122.512 102.811 207.707 156.662 41.758

steep 0.691 0.705 0.7 0.698 0.707 0.702 0.705 0.695

3.5.5 Recruits Page

This holds two plots. The first is a representation of the stock recruitment relationship for
each sau, all on one plot. This illustrates how different each sau is in terms of productivity.
The second plot includes a plot of the stock-recruitment relationships of each population
within each sau, which illustrates the variation apparent in the defined populations. Each plot
has its own y-axis scale, so care is needed with interpretation.

Figure 3.6: Total stock-recruitment curves for the eight SAU in the example.

3.5.6 popprops Page

Tabulates some of the properties of the individual populations within each sau. Currently this
reflects only the proportion of the average recruitment by sau allocated to each population,
which repeats what is found in the saudataEG.csv file.

37

3.5.7 Production Page

As the name suggests, this tab provides figures and tables realting to productivity. It has a
plot of the production curve relative to expected CPUE for each sau, including estimates of
the MSY and the predicted CPUE at MSY. The second plot is of the productivity curves for
the whole zone. This more complex plot could be generated for each sau as desired using the
production array (try str1(out$production)).

Finally, there is a small 5 x number-of-sau matrix of 𝐵0, 𝐵ெௌ, 𝑀𝑆𝑌, 𝐷ெௌ (depletion at
MSY), and 𝐶𝐸ெௌ (predicted cpue at 𝐵ெௌ) for each sau. This has extra information to the
first table in the Tables page.

Figure 3.7: Total stock-recruitment curves for the Zone in the example.

3.5.8 NumSize Page

This remains in need of further development. It includes a single plot containing the expected
equilibrium, unfished numbers-at-size for the whole zone, and a second plot illustrating the
numbers-at-size for each population. With 56 populations individual population details
cannot be discerned, but it still illustrates the variation in growth, modal progression and

38

productivity among populations). Following the messy all population plot is a separate plot
for each SAU, with snapshots of the size distribution of the stock in 5-year steps across the
projection period. Following these is a similar set of 5-year snapshots of the size-distribution
of each replicate’s catch for each SAU.

Figure 3.8: Predicted size-composition of the catch in sau12 from 2020 - 2050 in 5 yearly steps.

3.5.9 poptable Page

This contains the basic biological properties for each of the 56 populations in the example.
This is obviously a large table, which is also saved as popprops.csv inside the out object.
These values are based on the values provided as input in saudata.csv, with added variation
within the range specified.

3.5.10 zoneDD Page

As with any web page on Windows, pressing ‘ctrl +’ increases the size of the contents and
‘ctrl -’ decreases the size. With the figures, each can clicked and they enlarge automatically,
at top left is the back arrow that will return one to the broader view (Figure 3.4). Selecting the

39

zoneDD tab leads to a page with a figure made up of histograms of some of the major derived
properties of the 56 populations (as in the Biology tab) and then four large tables.

Figure 3.9: Histograms of eight of the major biological parameters and properties across all 56 populations within the zone.

The top table on this tab shows the contents of the propertyDD.csv file now found in rundir,
some of which is plotted in Figure 3.9. These are the conditioned emergent properties of each
population in the zone. The second is a table of the last ten years of harvest rates during the
conditioning for each population from the final_harvestR.csv file. Very high values in any
SAU or population indicate a potentially poor fit. In this case there are some values in the first
three populations (sau6) above 0.4 in years V2, V4 and V5, but sau6 to sau8 are difficult sau
to fit a model to. The third is the table of saudat.csv, which contains the data read in from the
saudataEG.csv file for reference. Finally, the fourth table, popdefs.csv, contains the specific
parameter values produced for various properties of each population.

40

3.5.11 condition Page

With the 8 SAU in the Tasmanian conditioning, this tab contains 12 plots and two tables. The
first plot compares the observed CPUE for each SAU, from the historical time series input in
the control file, with those predicted by the operating model after biological conditioning and
fitting the data using the R package sizemod. If you click on the plot in the web-page with
your mouse, it will expand to become easier to read the details. Return to the main page using
the left arrow (back) at the top of your browser (Figure 3.4). The match between the
observed and predicted values, (Figure 3.10) appear very good, although sau8 is clearly a
complex situation for any model to fit as since about 2012 the dynamics have been influenced
by other factors not in the model.

Figure 3.10: The top plot from the condition page of the internal web-page generated from the results of the do_condition
and do_MSE R functions from aMSE. The values beside the SAU names are the simple sum-of-squared differences between
the observed and predicted values.

An example of the individual SAU plots is given for SAU 10. Below the comparison of CPUE
plot there are 8 plots, one for each sau, illustrating the trajectory of the mature biomass

41

depletion level, the catch through time, the cpue (with the observed values in green), the
implied annual harvest rate, the mature biomass (in tonnes), and the implied recruitment level
(prior to 1982 and post 2014 are deterministically taken from the stock recruitment curve).

Figure 3.11: The SAU plot illustrating the dynamics of the combined populations within SAU 10. This, and plots for all other
SAU are to be found in the ‘condition’ tab.

Below the plots for each sau is a summary plot of each recruitment trace used to simplify
looking for correlated recruitment events predicted by the model. It is important to remember
that the recruitment deviates produced by sizemod and reproduced in aMSE are estimates
and not observed data. Nevertheless, it is possible to see repeating patterns of positive and
negative recruitment levels between sau. For example, sau10 to sau13 all show a decline
prior to 2010 followed by a rise, although the exact timing appears to differ by a year or so
between some sau. sau6 and sau13 only have recruitment deviates from 1990 to 2014
because they were only formed in 2000 when zonation was introduced, which limits the data
available for conditioning.

The final plot is a histogram of the depletion in the final year of conditioning. This illustrates
the effectiveness of including recruitment variation when preparing for the projections (which
was set in do_MSE() using the varyrs=7 argument). This figure is then complemented by a
table of the quantiles of that final year’s depletion level.

42

3.5.12 predictedcatchN

Illustrates the fit to the observed numbers-at-size in the catch obtained during the
conditioning. The quality of fit is very much affected by the number of observations
involved. These plots are for data at the sau scale, so they integrate across however many
populations are deemed to make up the sau’s dynamics. Given this is the case, the fit in some
cases is remarkably good, for example, in sau11 to sau13, the last plots on the page, the fits
to the later samples where sample sizes are large are excellent. sau6 has the least data and
generates the worst fit to size-composition data.

Figure 3.12: Size-composition of the catch in sau12 with the model fitted size-distribution. black = observed, red =
predicted.

3.5.13 OrigComp Page

Contains plots of the original size-composition of catch data. This is primarily for reference
but also provides an image that allows for an appreciation of changes through time and of any
gaps in the time-series. Understanding one’s data is vital when attempting to understand how
the dynamics in a stock may be changing.

43

Figure 3.13: Size-composition of the catch in sau12 for samples taken 2001-2020. Number of observations at the top of each
plot with year at the bottom.

3.5.14 popgrowth Page

Has plots of the individual growth curves expressed in each population within each sau. This
enables a better appreciation of the variation in growth included within and between sau.

44

Figure 3.14: Implied size at age for the 12 ‘populations’ within SAU 12. The curves all appear similar in form but differ in
the details. These growth curves will be identical across all scenarios, assuming the same random number seed is used.

3.5.15 projSAU Page

This page illustrates the effect of the harvest strategy on the dynamics of each sau. There are
seven plots, the first being for the predicted CPUE by sau, then the predicted actual catch and
aspirational catch (the first, not surprisingly, being more variable than the second because
that is one source of variation added in the MSE), then comes the mature biomass followed
by the exploitable biomass (very similar and currently reflective of the CPUE trends).
Finally, comes the predicted recruitment trend and the last plot is of the predicted annual
harvest rate.

The grey lines represent the trajectory of individual runs, and illustrate the variation among
replicates within each SAU. The each plot also has the median value of replicates (blue line)
and the 90th quantile bounds (fine red lines). It is important to appreciate that these are
derived values across all replicates, and do not represent an individual run.

45

Figure 3.15: Projected catches for the EG example for each SAU. The dashed line in each case is the estimated MSY.

3.5.16 DiagProj Page

Currently contains three plots designed to characterize some of the variability of the
projections and to ensure that the expected dynamics are behaving in a manner akin to the
real fishery.

The first plot is of the differences between the actual SAU catches and the aspiration SAU
catches, while useful this plot needs improvement to denote the proportional error in each
SAU. Within the current Tasmanian HS when actual catches begin to approach 120 percent of
the aspirational catch then that sau is closed to further commercial fishing. The 120% value
has been reduced in recent years, meaning the withsigB value needs to be reduced. This acts
to limit the variation now possible. This can be used to ‘tune’ the withsigB value that is used
to control how precisely the fleet dynamics adheres to the aspirational catches derived from
the harvest strategy. If withsigB was set extremely small, then the variation included in how

46

much catch was taken from each sau and each population would also be small. The
calcpopC() function, which estimated the aspirational catches (and TAC) is defined in EGHS
(or whichever harvest strategy is being used). The algorithm underlying the dynamics is
described and explained in the documentation to EGHS (and hopefully in any other HS as
well). The fleet dynamics essentially describes how the divers interact with the harvest
strategy and hence needs to be part of the input functions as part of the HS package or R
source file.

The second plot is a comparison of a limited number of randomly selected trajectories from
the scenario being explored showing the actual catches by SAU, as solid lines, and the related
aspirational catches as dotted lines. This plot functions to show that the fleet dynamics model
is behaving in a realistic manner but also to illustrate whether the expected variation in
catches by sau are plausibly realistic. In fact, they are far less variable than during the history
of the fishery (see the fishery tab) but this is a reflection of the meta-rules that control the
deviation from the aspirational catches, that were only introduced in 2019. The number of
lines plotted is determined by the ndiagprojs=4 argument within the do_MSE() functions
argument list. With four lines, this is readable but if this is set too large the plot becomes too
busy and loses any value for diagnostics, even when magnified.

The third and final plot is of the same number of individual CPUE trajectories for each sau.
Again, its purpose is to determine whether the variation in the predicted CPUE trends appear
realistic for the fishery concerned.

47

Figure 3.16: Projected cpue for four randomly selected trajectories in each SAU to determine visually whether they appear
realistic.

3.5.17 zonescale Page

Like the projSAU page, this contains seven plots of the same set of plots as seen in the
projSAU page, but of zone scale dynamics. The projected values for each population within
each SAU have all been combined at the zone scale (catch weighted where required, see the
help for the function using ?poptozone). The plots include total catch, the TAC (essentially
the same plots in Tasmania), CPUE, and mature biomass depletion level, mature biomass
(mirrors the depletion plot), annual harvest rate, and annual recruitment.

Of course, the zone scale dynamics obscure the variation observed at the SAU level and even
more so at the population level. The zone scale ultimately, is of principal interest in terms of
the consequences of a particular HS scenario for the TACC, while the SAU and population

48

scale details provide an understanding of the spatial complexity within the zone and the
relative reliance on the different SAUs.

The page ends with a table containing the median values of each of the plotted variables.

Figure 3.17: Projected zonal catch for the EG example with the median and inner 90th quantiles.

3.5.18 Fishery Page

This page was intended to illustrate the historical fishery data. It currently contains a plot of
the selectivity curves relating to all LML that occurred during the historical conditioning
period and through the projection period. Then a plot of the individual catches by sau, which
illustrates the remarkable inter-annual variation in historical catches in teh Tasmanian
western zone blacklip fishery. Some sau exhibit halving and doubling of catches in the space
of two years. Even the final zone-wide sub-plot exhibits some large changes between years,
although this calmed down a good deal at least at the zone scale once quota zones were
introduced in 2000.

The final plot is of the cpue observed in each sau. Note the truncation of the time-series in
sau6 and sau13, which occurs because the introduction of zonation in the year 2000 split
these sau across different zones.

49

Figure 3.18: Historical catches for each western sau. Note the sometimes extreme variability between years, which can be
highly destructive.

3.5.19 HSperf Page

This page currently holds a listing of the arguments used by the harvest strategy (hsargs) and
plots of the cumulative sum of total catches by sau at 5-years and at 10-years as well as plots
of the mean catches at 5 and 10 years, again by sau. The hsargs listing is simply a double
check that the values used are what was wanted.

The bi-modal outcome for sau12 is obvious and appears to relate to some random recruitment
events leading to lower biomass and CPUE, and in some cases an aCatch reduction of 75%
or even two such reductions. The final table is an example from a single replicate of what
target cpue is achieved through the projections for each sau. It is the case that sau6 to sau10
invariably breach the 150kg/hr imposed maximum, while sau11 - sau13 all achieve a
somewhat lower target, with the more easterly sau having lower targets.

50

It is expected that these tables and plots will differ for each harvest strategy examined.

Figure 3.19: Mean annual projected catch after 5 years in the EG example. SAU 12 has high yields and a bimodal outcome,
leading to the zone outcome being bimodal.

3.5.20 scores

The scores page illustrates the HS statistics for each sau. Each plot depicts the projected
catch and cpue, and the scores for the grad1, grad4, and targetCPUE performance measures
(PM). Finally, it provides the targetCPUE and the final total score from the harvest control
rule.

These plots enable the user to determine which fishery PM contributed most influence on the
catches and when.

The red lines, in each case are the median values.

Once again, the illustrated plots relate to the Tasmanian harvest strategy and its variants.
Differing plots will be required to be relevant for different jurisdictions. Equally, the
interpretation of any resulting patterns will be dependent on the jurisdiction’s HS. For

51

example, in Tasmania, the median final TasHS score is expected to stabilize at 6, which is the
index of the multiplier = 1.0 in the hcr argument of Tasmania’s hsargs.

Figure 3.20: Projected Tasmanian HS scores for the three CPUE performance measures, total score, and reference plots of
catch and cpue for example EG for SAU 12.

3.5.21 poplevelplots

Each sau has a given number of ‘areas of persistent production’ or populations. This tab on
the website contains plots of the replicate trajectories within each such population within
each sau. The median value for each population is also plotted as a unique colour. Such
population level plots illustrate the degree of heterogeneity in productivity between the
populations within each sau.

52

Figure 3.21: Projected catches in each population within sau12 for example EG.

3.5.22 phaseplot

The phaseplot tab contains eponymous plots for each sau. For each sau there are two phase
plots (or Kobe plots if you will). The first is a more classical plot of the predicted Harvest
Rate vs the predicted Mature Biomass Depletion level and contains all the data from the start
of the CPUE time-series to the end of the projection (the projected parts use the median,
although this may evolve to show some possible bounds). The second plot is of the CPUE
gradient-4 score from the EGHS vs the CPUE Target score from EGHS. The first is to act as
a proxy for the fishing mortality or harvest rate, and the CPUE target score acts as a proxy for
the mature biomass. The two plots for each sau are placed side by side to make comparisons
between the theoretical optimum variables and their proxies (which do surprisingly well).

A table is provided containing the final values (2050) for each SAU, of the metrics used in
the phaseplots.

Figure 3.22: Modelled phase plot and empirical proxy phase plot for sau12 in example EG.

53

54

4. Comparing MSE Scenarios

4.1 Introduction

In the previous chapter a description was given of how to run the aMSE software and
produce an array of results. That has many interesting aspects but the underlying intent of the
MSE software is to test and compare alternative harvest strategies. In general terms formal
harvest strategies have three main components: 1) specified data sets, 2) a specified data
analysis or assessment relative to limits and targets, and 3) a harvest control rule that
produces a specified catch or fishing mortality. In addition to these three components,
optionally, it is common, especially with empirical harvest strategies, to include meta-rules
that are used to modify the harvest strategy’s behaviour under different circumstances. These
metarules are designed to change the normal behaviour of the HS, should a particular
threshold be reached, or set of conditions apply, such as number of consecutive years the
CPUE above the target.

Strictly, if a change is introduced into any of the details of the three main requirements of a
harvest strategy, or the meta-rules if present, that would constitute a different harvest
strategy. It is therefore very simple to devise multiple alternative harvest control rule or meta-
rule variants for comparison. The objective of making such comparisons is to determine
which of the alternatives performs the best (best means it achieves the objectives of the HS
most effectively). Sometimes, as often in politics, the choice is limited to the least-worst.

Once again, before going into the details, it is useful to have a real-world example in mind to
aid making sense of the theoretical descriptions. To that end, in this chapter, we will develop
an example that makes a comparison between four versions of a Tasmanian HS (Haddon &
Mundy, 2024b) in which a constant set of reference years are used. This will introduce the
processes required to set up and then make comparisons between the results of different
scenarios, which will, hopefully, give the user/reader a more intuitive grasp of how to use the
suite of R packages that revolve around aMSE. The Tasmanian HS is under constant
exploration for ways to make it more effective, however, an unvarying version has been
produced for the examples in this guide: EGHS. This contains the constantrefhcr, which uses
a fixed set of reference years (defined in hsargs) and the consthcr, a very simple HCR that
uses a set of constant aspirational catches for each sau and that ignores any responses of the
stock. This is effectively projection with a constant catch and strictly is more a risk
assessment than a MSE.

4.1.1 The Example

The example will involve changing which meta-rules are included in the example Tasmanian
HS found in EGHS, that is, we need to change components of hsargs. The user should read
the documentation for the Tasmanian harvest strategy (at very least read the help page
?EGHS::constantrefhcr and ?EGHS::EGHS, but also the latest Tasmanian abalone
assessment and Bradshaw, 2018). The three input arguments, within hsargs, that are to be
changed are the metRunder, metRover, and pmwtSwitch values. A description of each of the
components within hsargs is provided in the help for the EGHS package. After calling
library(EGHS) then one can type ?EGHS in the console and the packages help will be listed,
including the components making up the hsargs.

The Tasmanian HS currently uses three performance measures for each sau:

55

1) the targCPUE, which is the current standardized cpue relative to a target CPUE,

2) the grad1, which is the gradient of change in cpue over the previous 12 months, relative
to a target gradient of zero,

3) the grad4, which is the gradient of change in cpue over the past four years, including
year-to-date, relative to a target gradient of zero.

The Tasmanian HS is based on Multi-Criteria Decision Analysis principles. A utility function
is developed to assign a score from 0 to 10 for each PM, with a score of 5 for the Target
value.

There are currently 16 or 17 components in the input hsargs (depending on whether two are
used to define a reference period or one vector; and this may change as other meta-rules are
considered). The three arguments relating to the current three meta-rules can be turned off by
setting them all = 0, or turned on by setting the first two to any number > 0, and the third is
set to the number of years after the target CPUE has been achieved that CPUE needs to keep
increasing before the alternative, more generous, HCR multipliers are used and the weights
attributed to the different performance measures are altered to whatever vector is out into the
stablewts argument. There will be four scenarios compared:

 No meta-rules - named EG from the previous chapter (already saved)
 only meta-rule 1 & 2 activated - named EGMR12
 only meta-rule 3 activated - named EGMR3
 all meta-rules 1 - 3 activated - named EGMRall

4.2 Running the Three Extra Scenarios

As in the previous chapter we will first start with a base-case that uses the current Tasmanian
HS but it will have the first two meta-rules activated (if required, see the previous chapter for
a description of these steps).

options("show.signif.stars"=FALSE, # some R options that I find can help
 "max.print"=50000,
 "width"=240)
suppressPackageStartupMessages({ # declare libraries ‐‐‐‐‐‐‐‐‐‐‐‐‐
 # this is the minimum, others can be added if desired
 library(aMSE)
 library(EGHS) # obviously only if using the Tasmanian HS
 library(codeutils)
 library(hplot)
 library(makehtml)
 library(knitr)
})
dropdir <‐ getDBdir()
prefixdir <‐ pathtopath(dropdir,"A_codeR/aMSEGuide/runs/")
we then use the _copyto()_ function to copy the required files from the
original example EG from the previous chapter. This is merely to facilitate
ensuring that the necessary files are put in the correct places.
copyto() fixes the runlabel and datafile names but if changes are made to
internal fixed settings, such as to _lambda_ or _M_ then the copied files
will still require editing. In these examples we will only be altering the
hsargs metRunder, metRover, and pmwtSwitch values so no other changes are

56

required.
filelist=c("controlEG.csv","lf_WZ90‐20.csv","saudataEG.csv")
aMSE::copyto(prefixdir=prefixdir,fromdir="EG",todir="EGMR12",
 filelist=filelist)

controlEG.csv has been copied to EGMR12 as controlEGMR12.csv
lf_WZ90‐20.csv has been copied to EGMR12 as lf_WZ90‐20.csv
saudataEG.csv has been copied to EGMR12 as saudataEGMR12.csv
Be sure to change the control, data, and run files where necessary

[1] "c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EGMR12"

Now we can define the rundir for the first scenario where no meta-rules are implemented. In
all cases you would, obviously, define your own rundir by defining the prefixdir and
postfixdir to suit your own computing environment.

startime <‐ Sys.time() # just to document the time taken
OBVIOUSLY, modify the rundir definition to suit your own setup!!!
postfixdir <‐ "EGMR12" # a name for the rundir, in fact, same as base‐case
rundir <‐ pathtopath(prefixdir,postfixdir) # define the rundir
verbose <‐ TRUE
controlfile <‐ paste0("control",postfixdir,".csv")
outdir <‐ "C:/aMSE_scenarios/EG/" # for storing results
check all is well with the directories
confirmdir(rundir,ask=FALSE) # automatically make it if it does not exist

c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EGMR12 already exists

confirmdir(outdir,ask=FALSE) # interactively ask default = TRUE

C:/aMSE_scenarios/EG/ already exists

One can see that the new rundir (EGMR12) now contains the three files required to run the
MSE. It is a good idea to check the controlEGMR12.csv file where you should find the the
runlabel and the datafile names have been changed appropriately by the copyto() function. As
the change to be made is in the hsargs input then everything is ready to run the MSE, as
before. Normally we conduct a run with at least 250 replicates, or perhaps 500, for this
example, we will leave the number of replicates, as set in controlEG.csv, at 250, which is
generaly sufficient to understand the implications of a given HS. Note also that we have set
includeNAS=FALSE to keep the saved outputs relatively compact.

set metUnder and metOver = 2, and pmwtSwitch = 0
hsargs <‐ list(mult=0.1, wid = 4,
 targqnt = 0.55, maxtarg = c(150,150,150,150,150,150,150,150),
 pmwts = c(0.65,0.25,0.1), # relative weights of PMs
 hcr = c(0.25,0.75,0.8,0.85,0.9,1,1.05,1.1,1.15,1.2),
 hcrm3 = c(0.25,0.75,0.8,0.85,0.9,1,1.1,1.2,1.25,1.3),
 startCE = 2000, endCE = 2019,

57

 metRunder = 2, metRover = 2, # set = 2 means metarule 1 and 2
 decrement=1, pmwtSwitch = 0, # set = 0 means no metarule 3
 stablewts = c(0.8, 0.15, 0.05),
 hcrname="constantrefhcr", printmat=NULL)
checkhsargs(hsargs)

The hcr being used is: constantrefhcr
meta‐rule 2 is being used
meta‐rule 1 is being used
hsargs$startCE and hsargs$endCE are used to define the reference periods
for each sau

out <‐ do_MSE(rundir,controlfile,hsargs=hsargs,hcrfun=constantrefhcr,
 sampleCE=tasCPUE,sampleFIS=tasFIS,sampleNaS=tasNaS,
 getdata=tasdata,calcpopC=calcexpectpopC,makeouthcr=makeouthcr,
 fleetdyn=NULL,scoreplot=plotfinalscores,
 plotmultflags=plotmultandflags,interimout="",
 varyrs=7,startyr=38,verbose=TRUE,ndiagprojs=4,cutcatchN=56,
 matureL=c(40,170),wtatL=c(50,200),mincount=120,
 includeNAS = FALSE,depensate=0,kobeRP=c(0.4,0.2,0.15),
 nasInterval=5,minsizecomp=c(100,135),uplimH=0.35,incH=0.005)

All required files appear to be present
Files read, now making zone
Now estimating population productivity between H 0.005 and 0.35
makeequilzone 25.2109 secs

Conditioning on the Fishery data
dohistoricC 1.144564 secs

Conditioning plots completed 1.497504 secs

Preparing for the projections
Projection preparation completed 10.57106 secs
Doing projections
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
2045 2046 2047 2048 2049 2050
All projections finished 1.468512 mins
Now generating final plots and tables
Starting the sau related plots

Finished all sau plots 14.37874 secs
Starting size‐composition plots

Finished size‐composition plots 5.972448 secs

Plotting fishery information

hsargs.txt saved to rundir
plotting HS performance statistics

plotting Population level dynamics

All plots and tables completed 15.46443 secs

58

makeoutput(out,rundir,postfixdir,controlfile,hsfile="EGHS Package",
 doproject=TRUE,openfile=TRUE,verbose=FALSE)

save(out,file=pathtopath(outdir,paste0(postfixdir,".RData")))

Now we need to repeat this a further two times using EGMR3 and EGMRall, which involves
redefining the postfixdir, which in turn, redefines the rundir. Do not forget to change the
meta-rule values, else you only repeat the previous analysis! Remember also, if you want the
web-sites to open automatically after they have finished you need to set the openfile argument
in makeoutput() = TRUE.

set metUnder and metOver = 0, and pmwtSwitch = 4, include hcr3 vector
postfixdir <‐ "EGMR3" # a new name for the rundir
rundir <‐ filenametopath(prefixdir,postfixdir) # define the rundir
controlfile <‐ paste0("control",postfixdir,".csv")
check all is well with the directories
confirmdir(rundir,ask=FALSE) # automatically make it if it does not exist

c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EGMR3 already exists

filelist=c("controlEG.csv","lf_WZ90‐20.csv","saudataEG.csv")
copyto(prefixdir=prefixdir,fromdir="EG",todir=postfixdir,filelist=filelist)

controlEG.csv has been copied to EGMR3 as controlEGMR3.csv
lf_WZ90‐20.csv has been copied to EGMR3 as lf_WZ90‐20.csv
saudataEG.csv has been copied to EGMR3 as saudataEGMR3.csv
Be sure to change the control, data, and run files where necessary

[1] "c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EGMR3"

hsargs <‐ list(mult=0.1, wid = 4, # mult changed to = 0.05
 targqnt = 0.55, maxtarg = c(150,150,150,150,150,150,150,150),
 pmwts = c(0.65,0.25,0.1), # relative weights of PMs
 hcr = c(0.25,0.75,0.8,0.85,0.9,1,1.05,1.1,1.15,1.2),
 hcrm3 = c(0.25,0.75,0.8,0.85,0.9,1,1.1,1.2,1.25,1.3),
 startCE = 2000, endCE = 2019, metRunder = 0, metRover = 0,
 decrement=1,
 pmwtSwitch = 4, stablewts = c(0.8, 0.15, 0.05),
 hcrname="constantrefhcr", printmat=NULL)
checkhsargs(hsargs)

The hcr being used is: constantrefhcr
meta‐rule 3 is being used
hsargs$startCE and hsargs$endCE are used to define the reference periods
for each sau

out <‐ do_MSE(rundir,controlfile,hsargs=hsargs,hcrfun=constantrefhcr,
 sampleCE=tasCPUE,sampleFIS=tasFIS,sampleNaS=tasNaS,
 getdata=tasdata,calcpopC=calcexpectpopC,makeouthcr=makeouthcr,
 fleetdyn=NULL,scoreplot=plotfinalscores,
 plotmultflags=plotmultandflags,interimout="",

59

 varyrs=7,startyr=38,verbose=TRUE,ndiagprojs=4,cutcatchN=56,
 matureL=c(40,170),wtatL=c(50,200),mincount=120,
 includeNAS = FALSE,depensate=0,kobeRP=c(0.4,0.2,0.15),
 nasInterval=5,minsizecomp=c(100,135),uplimH=0.35,incH=0.005)

All required files appear to be present
Files read, now making zone
Now estimating population productivity between H 0.005 and 0.35
makeequilzone 24.41401 secs

Conditioning on the Fishery data
dohistoricC 1.235547 secs

Conditioning plots completed 1.58161 secs

Preparing for the projections
Projection preparation completed 10.40617 secs
Doing projections
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
2045 2046 2047 2048 2049 2050
All projections finished 1.629163 mins
Now generating final plots and tables
Starting the sau related plots

Finished all sau plots 15.87958 secs
Starting size‐composition plots

Finished size‐composition plots 6.616973 secs

Plotting fishery information

hsargs.txt saved to rundir
plotting HS performance statistics

plotting Population level dynamics

All plots and tables completed 17.78126 secs

makeoutput(out,rundir,postfixdir,controlfile,hsfile="EGHS Package",
 doproject=TRUE,openfile=TRUE,verbose=FALSE)

save(out,file=pathtopath(outdir,paste0(postfixdir,".RData")))

And now the final scenario EGMRall, including all three meta-rules:

set metUnder and metOver = 2, and pmwtSwitch = 4, include hcr3 vector
postfixdir <‐ "EGMRall" # a new name for the rundir
rundir <‐ filenametopath(prefixdir,postfixdir) # define the rundir
controlfile <‐ paste0("control",postfixdir,".csv")
check all is well with the directories
confirmdir(rundir,ask=FALSE) # automatically make it if it does not exist

c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EGMRall already exists

60

filelist=c("controlEG.csv","lf_WZ90‐20.csv","saudataEG.csv")
copyto(prefixdir=prefixdir,fromdir="EG",todir=postfixdir,filelist=filelist)

controlEG.csv has been copied to EGMRall as controlEGMRall.csv
lf_WZ90‐20.csv has been copied to EGMRall as lf_WZ90‐20.csv
saudataEG.csv has been copied to EGMRall as saudataEGMRall.csv
Be sure to change the control, data, and run files where necessary

[1] "c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EGMRall"

hsargs <‐ list(mult=0.1, wid = 4, # mult changed to = 0.15
 targqnt = 0.55, maxtarg = c(150,150,150,150,150,150,150,150),
 pmwts = c(0.65,0.25,0.1), # relative weights of PMs
 hcr = c(0.25,0.75,0.8,0.85,0.9,1,1.05,1.1,1.15,1.2),
 hcrm3 = c(0.25,0.75,0.8,0.85,0.9,1,1.1,1.2,1.25,1.3),
 startCE = 2000, endCE = 2019, metRunder = 2, metRover = 2,
 decrement=1, pmwtSwitch = 4, stablewts = c(0.4, 0.5, 0.1),
 hcrname="constantrefhcr", printmat=NULL)
checkhsargs(hsargs)

The hcr being used is: constantrefhcr
meta‐rule 2 is being used
meta‐rule 1 is being used
meta‐rule 3 is being used
hsargs$startCE and hsargs$endCE are used to define the reference periods
for each sau

out <‐ do_MSE(rundir,controlfile,hsargs=hsargs,hcrfun=constantrefhcr,
 sampleCE=tasCPUE,sampleFIS=tasFIS,sampleNaS=tasNaS,
 getdata=tasdata,calcpopC=calcexpectpopC,makeouthcr=makeouthcr,
 fleetdyn=NULL,scoreplot=plotfinalscores,
 plotmultflags=plotmultandflags,interimout="",
 varyrs=7,startyr=38,verbose=TRUE,ndiagprojs=4,cutcatchN=56,
 matureL=c(40,170),wtatL=c(50,200),mincount=120,
 includeNAS = FALSE,depensate=0,kobeRP=c(0.4,0.2,0.15),
 nasInterval=5,minsizecomp=c(100,135),uplimH=0.35,incH=0.005)

All required files appear to be present
Files read, now making zone
Now estimating population productivity between H 0.005 and 0.35
makeequilzone 27.15966 secs

Conditioning on the Fishery data
dohistoricC 1.298785 secs

Conditioning plots completed 1.652807 secs

Preparing for the projections
Projection preparation completed 11.93203 secs
Doing projections
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

61

2045 2046 2047 2048 2049 2050
All projections finished 1.682187 mins
Now generating final plots and tables
Starting the sau related plots

Finished all sau plots 14.53013 secs
Starting size‐composition plots

Finished size‐composition plots 6.138116 secs

Plotting fishery information

hsargs.txt saved to rundir
plotting HS performance statistics

plotting Population level dynamics

All plots and tables completed 16.17092 secs

makeoutput(out,rundir,postfixdir,controlfile,hsfile="EGHS Package",
 doproject=TRUE,openfile=TRUE,verbose=FALSE)

save(out,file=pathtopath(outdir,paste0(postfixdir,".RData")))

Now, in your browser, there should be at least four webpages, each with the standard array of
tabs.

Figure 4.1: A view of a browser with four scenarios run and completed.

62

4.3 Making Comparisons

While it would be possible to open the same tab in each of the three pages and step between
them for a visual comparison that is not conducive to making useful comparisons. Instead, R
functions have been generated that make a series of comparisons between the scenarios by
first reading in the stored out objects from each MSE run. This involves knowing the outdir
that was used and selecting those stored objects that contain the information about each
scenario that the user wants to compare. So, assuming that a number of scenarios have
already been run (as above), first we set up the required libraries and directories and then list
the contents of outdir so an explicit selection can be made. If the user has setup a different
way of storing their results then, obviously, a different way of selecting and reading the
required scenarios will be required.

4.3.1 Prepare the Analysis
options("show.signif.stars"=FALSE,"stringsAsFactors"=FALSE,
 "max.print"=50000,"width"=240)
suppressPackageStartupMessages({
 library(aMSE)
 library(EGHS)
 library(codeutils)
 library(hplot)
 library(makehtml)
 library(knitr)
})
dropdir <‐ getDBdir()
prefixdir <‐ pathtopath(dropdir,"A_codeR/aMSEGuide/runs/")

postfixdir <‐ "EG_compare"
verbose <‐ TRUE
rundir <‐ pathtopath(prefixdir,postfixdir)
outdir <‐ "C:/aMSE_scenarios/EG/" # obviously define one that suits you
confirmdir(rundir,ask=FALSE)

c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EG_compare already exists

confirmdir(outdir,ask=FALSE)

C:/aMSE_scenarios/EG/ already exists

files <‐ dir(outdir)
printV(files)

 value index
1 BCtest.RData 1
2 EG.RData 2
3 EGMR12.RData 3
4 EGMR3.RData 4
5 EGMRall.RData 5
6 MR4noLML.RData 6
7 testMR4.RData 7

63

We will compare all four ‘EG’ scenarios, though that will make some of the plots relatively
busy.

4.3.2 Make the Comparisons

Currently, in the vector called files there are six scenarios, there could be very many more so
a method of selecting which files to use is needed. This is handled by the wrapper function
do_comparison() using an argument pickfiles, which is merely a vector of the index of each
file wanted in a comparison. In this case, pickfiles=c(1,2,3,4), if there had been two files
listed before the three we are interested in it would have been pickfiles=c(3,4,5,6). To
understand all the arguments to do_comparisons() see the function’s help. Running the
following code will generate a new webpage with multiple tabs (see the help for
?do_comparison). The output from the do_comparison() function is directed into an object,
called here, result. The structure of the contents of result are listed in the appendix to this
chapter. This is made available so that individuals can develop new plots and comparisons of
their own.

pfiles <‐ grep("EG",files) # or some other way of selecting, even manually.
result <‐ do_comparison(rundir=rundir,postfixdir=postfixdir,outdir=outdir,
 files=files,pickfiles=pfiles,verbose=TRUE,
 intensity=100,zero=FALSE,Q90=TRUE,
 altscenes=NULL,juris="",
 ribbonleg="topleft",scencol=c(1,2,3,4))

Loading EG.RData which may take time, be patient
Loading EGMR12.RData which may take time, be patient
Loading EGMR3.RData which may take time, be patient
Loading EGMRall.RData which may take time, be patient

 Base_Case EGMR12 EGMR3 EGMRall same
reps 250.00 250.00 250.00 250.00 1
randseed 3543304.00 3543304.00 3543304.00 3543304.00 1
sigR 0.35 0.35 0.35 0.35 1
sigB 0.10 0.10 0.10 0.10 1
sigCE 0.10 0.10 0.10 0.10 1
projyrs 30.00 30.00 30.00 30.00 1
numpop 56.00 56.00 56.00 56.00 1
nSAU 8.00 8.00 8.00 8.00 1
Nclass 105.00 105.00 105.00 105.00 1
hyrs 58.00 58.00 58.00 58.00 1
pyrs 30.00 30.00 30.00 30.00 1
larvdisp 0.01 0.01 0.01 0.01 1
initdepl 1.00 1.00 1.00 1.00 1
Now doing the comparisons

Now doing the HSPM tab

Now doing the C_vs_MSY tab

Now doing the Scenario PMs

Now doing the Zone tab

Now doing the Catch tab

64

Now doing the cpue tab

Now doing the depletion spawnB tab

Now doing the depletion exploitB tab

Now doing the harvestR tab

Now doing the phaseplots tab

Figure 4.2: A view of a browser page with the tabs currently produced by the do_comparison() function.

4.3.3 The Different Tabs

Hopefully, by now, it is not unexpected that the Home tab exhibits details relating to the run.

The comparisons begin in the scenes tab, which currently only contains a single table
detailing the underlying characteristics of each scenario. This table is a repeat of the table of
scenario characteristics printed to the console.

Given the challenge is to recover the stock in each SAU and that should allow the recovery of
the fishery, a balance or trade-off is required between the rapidity with which catches are
returned to the fishery and the rate at which stock biomass is predicted to recover. As the
plots in the Dynamics tab demonstrate, returning catches too rapidly does not allow the
biomass to increase as quickly, as evidenced by the predicted CPUE rising then falling
rapidly. To approach a more stable and resilient fishery such oscillations are best avoided.

Dynamics tab, where the median and 90th quantiles of the predicted projections for cpue,
actual catch, mature biomass, and harvest rate for each scenario are plotted against each

65

other. Few differences occur between scenarios in their CPUE until between 2028 – 2030,
depending on which Sau is considered. SAU 13 exhibits the relatively similar trends through
time. In all other SAU the no meta-rule (noMR) and meta-rule 3 (MR3) scenarios exhibit a
similar oscillatory trend except the noMR has a time-lag to reach the minimum CPUE of
about 10-11 years. In all cases in all scenarios (except in SAU13) CPUE remains above
100kg following the period of stock recovery. The MRall appears to achieve a relatively
stable CPUE more rapidly than MR12 and does not reach such high levels.

In terms of predicted catches MR3 returns catch to the fishery the fastest but then rapidly
reduces it again to become more stable eventually. As with CPUE, noMR follows a similar
pattern just 10 years more slowly. MRall leads to somewhat higher stable catches than MR12
and once again appears to find an improved balance between speed of recovery of the fishery
and a conservative return of catches. These outcomes are reflected in the predicted annual
harvest rates as well.

The mature biomass follows approximately the same trajectories in all scenarios until 2028-
2030 where they begin to diverge. noMR and MR3 aer both oscillatory with noMR lagging
behind the MR3. MR12 and MRall are both more stable in their trajectories with the MR12
scenario ending up with a somewhat higher level of mature biomass in all SAU except
SAU13. While that is a positive thing for the stock it implies a somewhat lower final catch.

The Productivity tab only exhibits a single table, which implies that all scenarios share the
same productivity characteristics. If the selected scenarios differed in some factor that
influenced productivity (perhaps different natural mortality values) then each different
scenario would have its own table of productivity properties by sau.

The Scores tab illustrates the final median harvest strategy scores for each sau and compare
them in the plot. But each scenario has a table with the final scores tabulated. These data
derive from functions within EGHS and will quite likely require changes when other Harvest
Strategies are implemented. Given the harvest control rule implemented in the HS the median
target would be a value of six (where values between 5 and 6 imply no change in catch).

The HSPM tab contains tables that, for each sau (and sometimes the whole zone), is gives the
median annual average variation in catch (aavc), the sum of the first 5 projection years of
catch, and the sum of the first 10 projection years of catch. The variability of catches during
the recovery stage is relatively low and it only begins to increase after about 10 years. Even
so, this table demonstrates that MR3 tends to be more variable in its catches than the other
three scenarios in all SAU. The sum to 5 and sum to 10 years illustrate differences between
the scenario with the sum10 reflecting the rapid return of catches made by MR3 with MRall
providing a more rapid return than either noMR or MR12.

The Catches tab contains three plots and a table. The key plots are where the average annual
variation of catches is plotted for each scenario x each sau, this is repeated for the sum of
catches over the first five years, and then for the first 10 years. The effect on sau12 become
apparent once again in each of these plots. The final table contains the boxplot statistics for
each comparison and each sau.

The catchBoxPlots is similar to the catches tab but contains boxplots for each sau for each
scenario, for the three harvest strategy performance measures: aavc, sum5, and sum10.

The cpueBoxPlots tab contains boxplots for each sau within each scenario of the years taken
to achieve the maximum cpue, and for each sau x scenario, the years taken to achieve the
median maximum cpue.

66

The C_vs_MSY tab contains plots for each scenario and sau of the ratio of the predicted
catches divided by the predicted MSY for each sau, which is one of the preferred MSE
performance measures. In the current example, the trajectory of return to near the MSY might
be better illustrated by a new ribbon plot as seen in the zone tab, and this will be
implemented.

The ScenarioPMs tab contains a set of histograms of the deviations from a loess fitted, in
each scenario, to all replicates across years. The mean and standard deviation of those
distributions are tabulated below. This is a different measure of catch variability.

The zone tab contains ribbon plot outlines of each scenario’s 90th quantile bounds for the
total zone statistics, overlaid so that areas of overlap and differences become clear. The use of
rgb colours allows for transparency so that the degree of overlap can become clear. When too
many scenarios are included in a plot this can become confusing.

Figure 4.3: The zone tab generated by the do_comparison() function. The base-case = EG, no meta-rules.

The Catch, cpue, deplsB, depleB, and the harvestR tabs all use the same ribbon plots as in the
zone tab except they repeat the information in the Dynamics tab in a manner that makes
comparisons simpler for some people.

67

The Catch tab uses ribbon plots to illustrate the overlap and differences between the scenarios
in terms of the combined catch for each sau. The use of semi-transparent colours helps to
discern the level of overlap.

Figure 4.4: The Catch tab generated by the do_comparison() function for sau12. The base-case = EG, no meta-rules.

The cpue tab uses ribbon plots to illustrate the overlap and differences between the scenarios
in terms of the cpue in each sau. Once again, the use of semi-transparent colours helps to
discern the level of overlap.

Figure 4.5: The cpue tab generated by the do_comparison() function for sau12. The base-case = EG, no meta-rules.

The deplsB tab uses ribbon plots to illustrate the overlap and differences between the
scenarios in terms of the mature biomass depletion levels in each sau.

68

Figure 4.6: The spawning biomass depletion tab generated by the do_comparison() function for sau12. The base-case = EG,
no meta-rules.

The depleB tab uses ribbon plots to illustrate the overlap and differences between the
scenarios in terms of the exploitable biomass depletion levels in each sau. In the example, the
differences found in sau12 become very clear. The results here are similar to those exhibited
with the spawning biomass depletion, but remain of interest because the exploitable biomass
is more closely associated with cpue than the spawning biomass.

Figure 4.7: The exploitable biomass depletion tab generated by the do_comparison() function for sau12. The base-case =
EG, no meta-rules.

The harvestR tab makes it very clear that MR3, sustains oscillatory behaviour in terms of
harvest rates (and other dynamics) much longer than the other scenarios.

69

Figure 4.8: The harvest rate tab generated by the do_comparison() function for sau12. The base-case = EG, no meta-rules.

Finally, the phaseplots tab contains ten plots depicting, for each sau the effect of the different
scenarios on the relationships, during the projections, of the following combinations of
variable (using the medians in all cases): 1) actual catch/MSY vs exploitable biomass
depletion, 2) actual catch/MSY vs mature biomass depletion, 3) actual catch/MSY vs Mature
Biomass/Bmsy, 4) actual catch vs exploitable biomass depletion, 5) Actual catches vs mature
biomass depletion, 6) Aspirational catch vs mature biomass, 7) Aspirational catch vs Mature
Biomass depletion, 8) CPUE vs Actual catches, 9) Annual harvest rate vs actual catches, and
10) Actual catches vs Exploitable biomass.

70

Figure 4.9: The harvest rate tab generated by the do_comparison() function for sau12. The base-case = EG, no meta-rules.

4.4 Further Developments

While above the text ended on “Finally, …” the comparison of scenarios is as areas still
under active development and further additions continue to be made with different
requirements for different jurisdictions. This, along with each jurisdiction’s harvest strategy,
is another area where the needs of the different jurisdictions may differ and require either
extra R source files or packages to be developed in each jurisdiction to provide the analyses
and plots wanted in each region.

71

4.5 Appendix Structure of the output from do_comparison()

Here we explore the structure of the outputs from do_comparion() by using the four scenarios
comared in this chapter.

The top level components of result are:

str1(result) : List of 7

 scenes : chr [1:4] “Base_Case” “EGMR12” “EGMR3” “EGMRall”
 ans :List of 4
 quantscen:List of 4
 dyn :List of 4
 prods :List of 4
 scenprops: num [1:13, 1:5] 2.50e+02 3.54e+06 3.50e-01 1.00e-01 1.00e-01 …
 devout :List of 2

The scenes object is, as shown above, a character vector with the names of each scenario

The ans object contains the outputs from each do_MSE() scenario.

str1(result$ans) : List of 4

 EG :List of 29
 EGMR12 :List of 29
 EGMR3 :List of 29
 EGMRall:List of 29

where each of he scenario lists have the following structure:

str1(result𝑎𝑛𝑠EG) : List of 29

 tottime : ‘difftime’ num 2.94
 runtime : POSIXct[1:1], format: “2025-01-07 07:54:54”
 starttime : POSIXct[1:1], format: “2025-01-07 07:51:58”
 glb :List of 19
 ctrl :List of 13
 zoneCP :List of 56
 zoneD :List of 14
 zoneDD :List of 14
 zoneDP :List of 14
 NAS : NULL
 projC :List of 5
 condC :List of 15
 sauout :List of 10
 outzone :List of 13
 production : num [1:71, 1:6, 1:56] 256 244 233 223 213 …
 condout :List of 2

72

 HSstats :List of 2
 saudat : num [1:32, 1:8] 21.5 0.3 130 1 54.3 …
 constants : num [1:33, 1:56] 6 21.5 0.3 130 1 …
 hsargs :List of 16
 sauprod : num [1:7, 1:8] 438.882 149.874 20.272 0.341 140.632 …
 zonesummary :List of 2
 kobedata : num [1:8, 1:4] 0.33 0.449 0.258 0.242 0.313 …
 outhcr :List of 8
 scoremed : num [1:30, 1:7] 42.8 35.3 31.8 31.5 33.4 …
 popmedcatch :List of 8
 popmedcpue :List of 8
 popmeddepleB:List of 8
 pops : num [1:56, 1:26] 1 2 3 4 5 6 7 8 9 10 …

and would include the numbers-at-size objects is these were saved with NAS=TRUE.

The result$quantscen object and internal structures contain the quantiles for the dynamics of
each SAU for the four variables cpue, catch. matureB, and harvestR, with the 0.025, 0.05,
0.5, 0.95, and 0.975 quantiles across the reps replicates, giving the central 95%, and 90%
ranges and the median.

str1(result$quantscen) : List of 4

 cpue :List of 4
 catch :List of 4
 matureB :List of 4
 harvestR:List of 4

str1(result𝑞𝑢𝑎𝑛𝑡𝑠𝑐𝑒𝑛cpue) : List of 4

 Base_Case:List of 8
 EGMR12 :List of 8
 EGMR3 :List of 8
 EGMRall :List of 8

str1(result𝑞𝑢𝑎𝑛𝑡𝑠𝑐𝑒𝑛cpue$Base_Case) : List of 8

 sau6 : num [1:5, 1:30] 97.6 99.9 110.3 121.3 123.1 …
 sau7 : num [1:5, 1:30] 111 112 124 136 140 …
 sau8 : num [1:5, 1:30] 149 150 161 174 177 …
 sau9 : num [1:5, 1:30] 117 119 131 143 148 …
 sau10: num [1:5, 1:30] 96 97.1 104.5 112.8 114.7 …
 sau11: num [1:5, 1:30] 89 90.4 97.2 106.6 107.9 …
 sau12: num [1:5, 1:30] 83.4 85 89.9 95.9 96.9 …
 sau13: num [1:5, 1:30] 84.7 85.5 89.5 93.7 95.2 …

73

The structure of the dyn object within result provides all replicates within the dynamics for
each SAU. Each of the scenarios is made up of arrays of 88 years including the historic years
and the projections, the 8 SAU, and the 250 replicates.

str1(result$dyn) : List of 4

 EG :List of 10
 EGMR12 :List of 10
 EGMR3 :List of 10
 EGMRall:List of 10

str1(result𝑑𝑦𝑛EG) : List of 10

 matureB : num [1:88, 1:8, 1:250] 439 438 436 429 409 …
 exploitB: num [1:88, 1:8, 1:250] 415 414 413 409 395 …
 midyexpB: num [1:88, 1:8, 1:250] 0 431 430 428 421 …
 catch : num [1:88, 1:8, 1:250] 0 1 2 8 22 …
 acatch : num [1:88, 1:8, 1:250] 0 1 2 8 22 …
 harvestR: num [1:88, 1:8, 1:250] NaN 0.00232 0.00465 0.0187 0.05228 …
 cpue : num [1:88, 1:8, 1:250] 0 437 436 432 422 …
 recruit : num [1:88, 1:8, 1:250] 259139 259078 258961 258478 257088 …
 deplsB : num [1:88, 1:8, 1:250] 1 0.998 0.994 0.977 0.933 …
 depleB : num [1:88, 1:8, 1:250] 1 0.999 0.996 0.985 0.953 …

The structure of result$prods object provides the productivity characteristics of each SAU.

str1(result$prods) ; List of 4

 EG : num [1:8, 1:7] 439 872 524 2439 2072 …
 EGMR12 : num [1:8, 1:7] 439 872 524 2439 2072 …
 EGMR3 : num [1:8, 1:7] 439 872 524 2439 2072 …
 EGMRall: num [1:8, 1:7] 439 872 524 2439 2072 …

result𝑝𝑟𝑜𝑑𝑠EG

 B0 Bmsy MSY Dmsy CEmsy Hmsy Bexmsy

 sau6 438.8820 149.8744 20.27160 0.3414914 140.63196 0.195 91.32144
 sau7 872.1711 272.7968 43.73620 0.3127790 115.88669 0.200 191.66429
 sau8 524.4789 166.0719 24.93913 0.3166417 194.81373 0.175 126.23452
 sau9 2438.8778 748.3589 122.48502 0.3068456 198.17074 0.180 600.52685
 sau10 2071.9641 616.6733 102.77587 0.2976274 142.30645 0.170 536.12436
 sau11 4152.7893 1257.9882 207.63196 0.3029261 140.28520 0.180 1018.44438
 sau12 3126.2611 951.3633 156.59858 0.3043135 91.10815 0.175 792.96791
 sau13 915.9109 303.9922 41.73923 0.3319015 75.48181 0.190 193.28620

The result$scenprops object contain the properties of each scenario used to ensure that like is
being compared with like. The same column identifies any rows which have difference
between scenarios.

74

result$scenprops

 Base_Case EGMR12 EGMR3 EGMRall same

 reps 250.00 250.00 250.00 250.00 1
 randseed 3543304.00 3543304.00 3543304.00 3543304.00 1
 sigR 0.35 0.35 0.35 0.35 1
 sigB 0.10 0.10 0.10 0.10 1
 sigCE 0.10 0.10 0.10 0.10 1
 projyrs 30.00 30.00 30.00 30.00 1
 numpop 56.00 56.00 56.00 56.00 1
 nSAU 8.00 8.00 8.00 8.00 1
 Nclass 105.00 105.00 105.00 105.00 1
 hyrs 58.00 58.00 58.00 58.00 1
 pyrs 30.00 30.00 30.00 30.00 1
 larvdisp 0.01 0.01 0.01 0.01 1
 initdepl 1.00 1.00 1.00 1.00 1

The result$devout object contains, for each SAU, the mean deviates from a loess fitted to
each catch replicate as well as their standard deviation. This repeats the tables and
complements the plots seen in the ScenarioPMs tab in the do_comparions() HTML output. It
compares the variability of catches within each SAU across scenarios across the full set of
projection years. In the meandevs table below for example, notice in SAU6 how the mean for
EGMR3 is more than twice that of the other scenarios.

str1(result$devout) : List of 2

 meandevs: num [1:4, 1:8] 22.4 16.9 55.2 21.4 51 …
 sddevs : num [1:4, 1:8] 5.2 4.27 15.61 6.65 13.6 …

result𝑑𝑒𝑣𝑜𝑢𝑡meandevs

 sau6 sau7 sau8 sau9 sau10 sau11 sau12
sau13

 Base_Case 22.36759 51.00718 27.86222 123.9374 89.31076 211.9045 139.0051
100.81643

 EGMR12 16.88400 42.09966 23.32073 116.9489 88.71891 196.1574 127.8207
75.98318

 EGMR3 55.17959 98.20418 75.87913 344.6366 185.62404 519.1445 314.5054
147.18156

 EGMRall 21.43495 51.51618 32.01075 160.5546 119.10000 265.3326 172.1482
87.70842

75

5. The Input Files

5.1 aMSE Requirements

There are a number of requirements when conducting a Management Strategy Evaluation of
alternative harvest strategies on an abalone fishery using the aMSE R package. It is currently
best to use the RStudio integrated development environment, as this facilitates the installation
of different R packages, and the editing and running of the R files used to conduct the actual
scenario runs (see the Using the aMSE Software chapter).

The R packages required to run a scenario include at least:

 aMSE the main R package containing the operating model and auxiliary functions
used.

 codeutils an R package containing numerous utility functions that are common to many
simulation tasks.

 hplot an R package containing functions that facilitate the generation of various plots.
 makehtml an R package used to generate the multi-tabbed web-pages that can display

the results generated. Not strictly required for running the scenarios but is helpful for
displaying the results in an accessible manner.

 jurisdictionHS.R a source R file containing functions unique to a particular
jurisdiction’s harvest strategy, or a package such as:

 TasHS is a new R package that encapsulates the harvest strategy used in Tasmania,
which is used as an alternative to having a jurisdictionHS.R. The input constants used
by some of those Tasmanian HS R functions still need to be declared in hsargs before
running the MSE. Using an R package rather than an R source file helps guarantee
that the same software is used in all scenarios and makes it easier to maintain or
modify the harvest strategy as required. In the examples herein, a stable but cut-down
version of TasHS called EGHS is used.

These five packages are available from https://www.github.com/haddonm.

 knitr an R package used in vignette preparation and the production of formal tables in
aMSE’s output (obtainable from CRAN).

Most importantly, for this chapter, there are also a number of other data files required for a
scenario run and these are all .csv files. In the sections below we will go through their
structure and contents in detail to act as a guide to their format and functioning. Each can be
generated using the template functions within aMSE (see the Using_aMSE chapter for
details):

 a control_scenario.csv file (whose name can be anything the user wishes), that holds
control options, many other constants, and identifies other input files.

 a saudata.csv file, that holds parameterizations of the biological properties of the sau
and the populations that make up the operating model.

There may also be other data files if such data are available, these include:

 a size-composition of commercial catch data file (default from the rewritecompdata()
function is lf_WZ90-20.csv, which is also used in the control file from
ctrlfiletemplate())

76

 a size-composition of fishery-independent survey file, with the same internal format as
the fishery size-composition file.

When using the R package aMSE a typical scenario run would entail a number of
fundamental steps, although most of these are not immediately obvious tpothe user:

 Initiate each population within each sau in the operating model with its biological
properties.

 Generate the equilibrium unfished zone across all populations and estimate the
productivity of each population (and hence each sau and the total zone).

 Condition the operating model using either a hypothetical depletion or apply historical
fishery data until the simulated zone is ready to be projected under control of the
particular harvest strategy being considered (Figure 5.1).

 Conduct the projections and summarize the results.

Figure 5.1: A spectrum of alternative approaches for initiating and using the MSE framework. The initial depletion can be
no initial depletion.

5.2 File Locations for each Scenario

Within aMSE, for each scenario considered, it is designed so that all related input files
(control, data, and size composition data, (and jurisdictionHS.R if that is being used rather
than an HS package), and all result files will be contained in the same directory. Within the
aMSE code, this directory is referred to as the rundir (as in run-directory). It is suggested that

77

each scenario run be given a unique name that is then used as the rundir name (the postfixdir
as described in the Using aMSE chapter). For example, if examining the influence of the legal
minimum length (LML) on the outcome of using a particular harvest strategy (perhaps using
the TasHS R package) one might have the following scenarios: rundir = “EGlml140”,
“EGlml145”, “EGlml150”, and so on, all contained in a sub-directory named ‘scenarios’ (or
whatever you wish; for example, Malcolm, is a good name, though you may be able to think
of more appropriate ones). This would facilitate future comparisons by simplifying
identification and selection of those scenarios to be compared. The names also suggest they
are all variants of the “EG” basecase scenario. But of course, a user may name their rundir
whatever they wish. The aim of aMSE is to facilitate running an MSE on abalone, not to
force people to work effectively or efficiently!

The intent is that the control.csv, saudata.csv and the lf_data.csv files (and jurisdictionHS.R
file if you have one) are stored in the rundir for each given scenario explored. This may entail
duplicating the saudata.csv, lf_data.csv, and jurisdictionHS.R files between scenarios (one
reason an HS R package is a sensible option) so care needs to be taken that if one changes
these underlying files then those changed files need to be propagated across all sub-
directories in which they are used. This is the responsibility of the operator. A simple way
of making such copies has been illustrated when discussing the comparison of scenarios in
the Comparing Scenarios chapter.

Here we will focus solely on the control and data files. There are functions to generate data
file templates for each of the data-file types ctrlfiletemplate(), datafiletemplate(), and
rewritecompdata(), which uses the internal data set data(lf). These can be run and the
resulting templates edited to form the required files, this also automatically illustrates the
required format. Alternatively, another option is to use the example data-files, made available
with the aMSE package, which can be saved, copied and edited appropriately.

Similarly, within aMSE, there are functions to read in each type of data-file. If there is a
formatting error within the data-file it should throw an error which identifies where it has
gone wrong. Further development is intended to these error checks. Using the template
functions and editing the results can be simpler than starting from scratch.

The input data-files, currently, are all required to be .csv files where components with
multiple values use a comma as a separator. This makes their preparation using software such
as Microsoft Excel relatively simple. They can also be edited directly in the editor pane of
RStudio (or any other text editor).

The first of the two files is the control_scenario.csv (I name mine by including reference to
the scenario, as in controlM15h7L75.csv, (natural mortality M=0.15, steepness h=0.7, and
lambda L=0.75). This file contains a wide range of settings concerning the structure of the
Operating Model as well as where to find any historical conditioning data from a given
fishery (catches, cpue, recruitment deviates), if such conditioning is required. The second file
would then be named saudataM15h7L75.csv and contains the data that is used to define the
biological properties of each sau that make up the simulated zone. The rest of this document
provides a detailed description of the contents and format of these files. The third file,
another data file, would contain the size-composition data used to condition the scenario, if
available.

If the user has used longer filenames to describe their scenarios this can lead to many plots
becoming confused as the scenario names are used in the figure legends when making

78

comparisons. This is why do_comparisons() has an altscenes argument, that allows
alternative scenario names to be allocated for use in the figures.

5.3 The Conditioning Requirements

There is a spectrum to the degree to which the operating model needs to be conditioned on a
real fishery. At the least specific, one still has to include a spatial structure that would reflect
a typical abalone stock. In aMSE the top level is the zone, which can contain even a single
SAU, which must contain one or more populations. Hence the smallest simulated zone would
constitute a single SAU with a single population (this might be used to compare the effect of
included an array of populations within an sau). The example data-sets within aMSE exhibit
a spatial structure of 8 SAU with a total of 56 populations. This hierarchy can be customized
to suit a particular jurisdiction and species, and one could then include what might be deemed
typical characteristics of growth, maturity, emergence, and other details, including variation
among the different populations found within each SAU. Even with such details it would
remain a generic abalone MSE (Figure 5.1).

It is possible to take such conditioning a step further and customize the details of the biology
of each SAU, or even each population making up the spatial structure, to reflect the biology
known for a real fishery zone (assuming there are field data available). One could also scale
predicted productivity and cpue to match a real fishery. This would be less generic but still
not exactly fitted to a real fishery. The detailed spatial structure internal to the operating
model is what makes it impossible to fit the operating model to fishery data as a whole.
However, it might still be possible to fit the productivity and fishing history of individual
SAU to real fishery data and thereby gain estimates of actual productivity and possibly even
recruitment deviates (see Using_sizemod_to_Condition the SAU). Of course, while this latter
approach would appear, at first glance, to be the best strategy for examining a harvest
strategy, as it might operate in a real situation, it is also the most demanding in terms of data
and difficulty. One can spend large amounts of time iteratively improving an operating model
fit to observed catches, length-composition, and CPUE data for each SAU (Figure 5.1).
While this is a fine way to spend time (a lot of time, and I really mean a lot of time) it is also
a good strategy to remember that there is a spectrum of how closely one needs to reflect
nature and that some questions about harvest strategies do not require the best possible fit to a
real fishery to remain useful for determining the implications of alternative management
options (see for example, Pourtois et al, 2022).

5.4 The control_scenario.csv File

The control file is a .CSV file made up of a series of sections and each will be described in
turn. The values expressed in this document may differ from those generated by the
ctrlfiletemplate() function, but the descriptions are valid. Within the control.csv file (which
can have any name you wish, it does not have to be control.csv, though it does have to be a
.csv file), the main section headings are usually written using capital letters for increased
clarity. The correct spelling of such section title is important, as is the spelling of the variable
names in the first column. The order of the sections does not need to be strictly maintained
but the order of any components within each section must be maintained as described. This is
required because in a number of cases they are being parsed in sequence, though many are
also being obtained explicitly by name (which is why typing/spelling the names correctly is
also important; the template files are all correct). Where the labels or names are not clear as
to the intent of the variable then a description can be given to the right of the actual values.
Comments can be inserted anywhere outside of any of the sections. This is all exemplified in

79

the .csv file generated by ctrlfiletemplate(), which we will assume was given the default name
controlEG.csv.

To aid understanding this document it would help the reader to have a copy of the .csv file
generated by ctrlfiletemple() open in a window.

5.4.1 DESCRIPTION

At the top of the controlEG.csv file is an optional description section that can be used to
describe the objective of the scenario implied by the control and population files. The author
can add as many lines of text to this section as desired as, currently, it is not used in the
model run. This may change later so it may act as meta-data for each run. It would be useful
to treat this section as such meta-data anyway.

DESCRIPTION

Control file containing details of a particular run
Modify the contents to suit your own situation
I have added these next lines, which do not influence reading the file
If you wish you should modify the contents of this description to suit
the scenario being executed, use as many lines as required for
your own description.

5.4.2 START

The start section currently has four components, a name for the particular run (which gets
used on the home tab/page of the output web-page but is most useful when comparing
scenarios so make it informative!), the full name of the saudataEG.csv file (which is expected
to be found in the same rundir as the controlfile). In each case, note the use of commas to
separate a variable’s label from each variable’s value (cannot be seen if opened in Excel, but
as long as the file is saved as a csv file all will be well). The hopefully descriptive text after
each variable’s value(s) is ignored by the program and can be expanded if desired (as long as
it remains as a single line, the comments below are expanded to include more explanation but
you should not have multiple lines). Such descriptive text should not include commas as this
will break it up into separate Excel cells

START

 runlabel, Base_Case, label for particular scenario. Very important when comparing
scenarios.

 datafile, saudataBC.csv, name of saudata file = saudataBC.csv
 bysau, 1, 1=TRUE, 0 = FALSE are we expecting data by SAU or population.

Generally, one would use by sau, but an option exists to operate with populations
explicitly. (see Conditioning by Population.).

 parfile, NA, name of file containing optimum parameters from sizemod, this is used to
simplify transferring information from sizemod to aMSE during conditioning.
Generally, this is NA, which means it gets ignored (see the chapter on Using sizemod
to condition the SAU).

80

5.4.3 zoneCOAST

The zoneCOAST section (an odd/old name, which may change to become something more
descriptive, but once something is named then coding inertia can set in) currently contains
four components.

zoneCOAST

 replicates, 100, number of replicates normally at least 250 or 500, in the code this is
found in glb named reps.

 withsigR, 0.35, recruitment variability eg 0.35, this literally varies recruitment in a Log-
Normal fashion during projections and the last few years of the conditioning.

 withsigB, 0.1, process error on exploitable biomass. This affects the fleet dynamics so
that, in Tasmania, the actual SAU catches end up rather different from the aspirational
catches, though they all sum to the TAC. Elsewhere it could be used in the equivalent
fleet dynamics function within the JurisdictionHS.R source file or R package.

 withsigCE, 0.1, process error on cpue calculations. This will vary the relationship
between cpue and exploitable biomass by including Log-Normal errors. For example,
a value of 0.025 will varying the apparent exploitable biomass in individual model
events between 0.9 - 1.1 times the actual value.

In the code base, the three sources of variation (withXXXX) reside in the ctrl object.

withsigR relates to the year-to-year recruitment variability. This does not include any special
recruitment events or recruitment deviates that may be included. During the generation of the
equilibrium, unfished model, recruitment variation is set to a very small number, 1e-08, so
that recruitment processes are effectively deterministic off the Beverton-Holt stock
recruitment relationship. While there appears to be no evidence of auto-correlated recruitment
residuals the intent is that these will eventually be included as an option (see Operating
Model Structure for further details of the model equations). It is possible to include
exceptional events in particular years within the projections that influence recruitment and/or
survivorship. This is intended to allow for the exploration of the implications of such things
as marine heat waves, exceptional storms, and other potentially damaging events. Details are
given in the Perturbations within Projections chapter.

𝑅,௧ ൌ
4ℎ𝑅𝐵,௧

ௌ

ሺ1 െ ℎሻ𝐵 ሺ5ℎ െ 1ሻ𝐵,௧
ௌ 𝑒ఌ,ିఙೃ

మ/ଶ

where 𝜀,௧ is defined as:

𝜀,௧ ൌ 𝑁ሺ0,𝜎ோ
ଶሻ

withsigB the fleet dynamics of where divers elect to take their catches within an SAU mean
that the actual catches from each SAU differ from the aspirational catches allocated to each
SAU according to whatever harvest control rule is used. This will be determined within each
jurisdictions HS R package, and may be different to the description given here, which only
reflects the case in Tasmania. This is implemented by first allocating catches to the SAU in a
deterministic manner and then modifying them by imputing variability to the perceived
distribution of biomass among SAU, denoted 𝑢, which is then propagated across component
populations:

81

𝐵௨,௧
ா,∗ ൌ 𝐵௨,௧

ா 𝑒ఌೠ,ିఙಳ
మ/ଶ

where:

𝜀௨,௧ ൌ 𝑁ሺ0,𝜎
ଶሻ

𝜎, withsigB, is the standard deviation of the variation that occurs between the real
exploitable biomass and the perceived distribution of exploitable biomass across SAU’s, and
also includes other sources of uncertainty.

This variation is introduced into the potential SAU catches using:

𝐶௨,௧
∗ ൌ 𝑇𝐴𝐶௧ ൈ

𝐵௨,௧
ா,∗

∑𝐵௨,௧
ா

where 𝑇𝐴𝐶௧ is the sum of the HCR’s aspirational catches in each year 𝑡. One diagnostic
used during conditioning (see the DiagProj tab in the webpage) is to examine the variation
between the actual catches and the aspirational catches previously determined by the HCR, if
one has such data. Otherwise, it should be characterized from the outputs, which will allow
its variation to be examined for plausibility.

withsigCE designates the imprecision in the relationship between cpue and exploitable
biomass. Essentially, it is used to generate a Log-Normally distributed random number about
the value 1.0, which is then used to multiply the actual exploitable biomass. This is all
conducted at the population scale (see oneyearcat code in dynamics.R). Given:

𝜀௨,௧ ൌ 𝑁ሺ0,𝜎ଶ ሻ

then bias-corrected Log-Normal errors depicted as:

𝑒𝑟𝑟 ൌ 𝑒ఌೠ,ିఙమ /ଶ

If 𝜎 is set extremely small (say, 1e-08), then 𝑒𝑟𝑟 is essentially equal to one, otherwise
some variation around 1 will occur and be introduced into the estimate of cpue or each
population. This would be whether hyperstability is also implemented in the cpue.

𝐶𝐸 ൌ 𝑞 ൈ 𝐵ா ൈ 𝑒𝑟𝑟 ൈ 1000

where 𝐵ா is the average of the mid-year and end of year exploitable biomass. A 𝜎 ൌ
0.025 value of provides a range of multipliers on the exploitable biomass of between 0.9
and 1.0:

82

Figure 5.2: Typical range of process error multipliers for a sigce value = 0.025.

Figure 5.3: Typical range of process error multipliers for a sigce value = 0.15.

5.4.4 ZONE

Again, the use of commas to separate variable values is essential. The zone is defined in
terms of the number of SAU (spatial assessment units) it is made up of.

ZONE

 nSAU, 8, number of spatial assessment units eg 2
 SAUpop, 3, 3, 5, 7, 9, 9, 12, 8, number of populations per SAU in sequence. The phrase,

‘in sequence’ relates to the idea of distributing the SAU, and their contained
populations, along the coastline in an approximately linear manner. This simplifies
the larval dispersal matrix, which currently assumes the populations are aligned along
the coastline approximately linearly.

 SAUnames, sau6, sau7, sau8, sau9, sau10, sau11, sau12, sau13, labels for each SAU
 initdepl, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, initial depletion levels for each SAU.

In the code, nSAU, SAUpop, and SAUnames all reside in the glb object, inexplicably,
SAUnames in the glb object is called saunames. The initdepl values are held in the condC
object used when conditioning the zone.

83

The example file from ctrlfiletemplate() inserts the number of populations among SAU that
reflect the current selection in the Tasmanian Western Zone, but each simulated zone would
be expected to be different. The SAUnames should only be mixtures of letters and numbers
but must not contain spaces. The initdepl is the intended initial depletion before either the
model run or further conditioning. If any of the initdepl values for any SAU is < 1.0 then,
once the equilibrium zone is achieved it will undergo a depletion event (see the help on the
function depleteSAU())

5.4.5 SIZE

The size structure range used in the example data files was originally selected to suit the
Tasmanian blacklip abalone fishery. Hence it extends the midpoints of each 2mm size class
from 2mm - 210mm, with the 210mm class being a plus group. These values will not
necessarily make sense for other jurisdictions or species. Haliotis roie, for example, will
require a much smaller upper size, and might possibly use 1mm size classes, depending on
how data are collected.

SIZE

 minc, 2, centre of minimum size class, classes are 1-3,3-5,5-7…, centered at 2,4,6,…
 cw, 2, class width mm
 Nclass, 105, number of size classes, leading to a maximum midpoint of 210mm

These values lead to the dynamics being described within vectors and matrices ranging from
2 – 210 in 2mm size classes. Of course, each of these values can/should be altered to suit the
biology of the species concerned. The derived midpts defining the size-classes, and the
Nclass reside in the glb object.

5.4.6 RECRUIT

Larval movement between Tasmanian blacklip populations has been demonstrated to be
remarkably low. Nevertheless, there will undoubtedly be some small amount of larval drift
between populations, which operate on a smaller scale than the SAU within which they are
found. With no generic estimates of this movement rate it is assumed that the populations are
generally aligned linearly along the coastline and such larval movement is a small constant
rate.

A linear arrangement along the coast is obviously an approximation but one should attempt to
arrange the SAU and component populations in this manner or else the movement matrix will
need to become rather more complex (which remains a possibility, but in the absence of data
one can only wish you luck).

RECRUIT

larvdisp, 0.01, rate of larval dispersal eg 0.01 = 0.5 percent of recruits in each direction

The value of larvdisp is used to construct a simple larval movement matrix that assumes
movement only occurs between adjacent populations at a rate of half the larvdisp value.
While a value of 0.01 may appear almost trivial this does affect the equilibrium dynamics,
but the effects are generally only minor. However, by including this it is now possible to
determine the explicit effect of different levels of larval movement, and this would enable the
importance of the relative isolation of the different species to be explored. The movement
matrix is contained with the ‘globals’ object glb, where it can be tabulated and visualized.

84

5.4.7 RANDOM

There will often be a need to control the generation of random numbers used during both the
definition of the populations and the projections. The use of a random seed is especially
important when conditioning the operating model as many random numbers are used during
that process and if the conditioning is intended to simulate a specific fishery, then the
distribution of productivity needs to remain the same during each model run. The truth of this
will become more apparent during the description of the saudataEG.csv file contents and uses
in sections below.

The use of specific random seeds might be wanted, for example, if one wanted to be sure to
repeat a particular analysis exactly, of perhaps to see only the effect of changing an argument,
perhaps the LML, while making no other changes. So, to ensure the production of the same
sequence of pseudo-random numbers, one uses set.seed. Under RANDOM we have two
values, the first, randomseed is used for repeatability of population generation when
conditioning the model. By default one would expect this to have a value. The second value,
randomseedP is used for repeatability during the projections. Each scenario could have a
different randomseed and, optionally, randomseedP, although one should think carefully
about what one is comparing between scenarios when making this choice. Using the same
seed for all scenarios compared ensures any differences seen are due the changes to the
harvest strategy and are not due to the biological properties used. Ideally, one would conduct
comparisons with the same initial randomseed. But would use both the same or different
randomseedP for the projections so as to capture the fill range of variation. One can (should)
use getseed() from codeutils to generate such seeds. It is recommended that one not try to
generate one by oneself. The literature suggests that 12345 tends to be used more often than
would be expected at random(!) so it, and others akin to it are just not good enough.

If one does not want to set the random seeds and just use any old random sequence that
comes along then set randomseed and randomseedP to 0. By default, randomseedP is set to
zero.

RANDOM, Set these to zero for non-repeatable starting points.

 randomseed, 3543304, for repeatability of population definitions if >0
 randomseedP, 0, for repeatability of projections by simply continuing with the sequence

started by the randomseed value, if a different randomseedP is used, then a new set
sequence of pseudo-random numbers will occur, or if set to NA a random new
sequence will occur each scenario run.,

5.4.8 initLML

However the model is to be run (Figure 5.1), all scenarios begin by generating an unfished,
equilibrium model. This includes a characterization of the equilibrium productivity of each
population and this will require a description of selectivity to be used, hence we need an
initial LML. The fishery productivity is altered when the LML is changed because it alters
the balance between natural mortality, growth, and fishing mortality. Smaller LML do not
always generate the highest levels of productivity (this becomes a yield-per-recruit problem,
although that also, of course, depends upon the biological properties of growth).

initLML, 140, used to generate unfished zone if no historical catches and LML present

If the conditioning is to include the application of historical catches the different SAU may
still require an initial depletion (which can be set at 1.0) and an initial LML. If conditioning

85

on historical catches, then it makes sense to initiate the model at the LML in use at the start of
the historical catches. If a generic MSE is being conducted, for example, a generic west coast
Tasmania starting projections in 2020 or 2021, then perhaps initiate the model at an LML of
140, although, as in the file generated by ctrlfiletemplate(), project the dynamics forward
from 2020 with an LML of 145 (see PROJLML later).

5.4.9 PROJECT

Basic information about the projection period of the simulations. Elsewhere we add together
the projection years (here pyrs=30) and the historical years, hyrs, value (see CATCHES) to
obtain the total number of years of the final projections. These values are found in the glb
object, along with the year names for each sequence of years (as in hyrnames and pyrnames).

PROJECT, 30, number of projection years for each simulation

5.4.10 ENVIRON

The entries under the ENVIRON heading are designed to allow the introduction of
exceptional events into specific years during the projections. For example, the incidence of
marine heat wave events is increasing and are of such a degree that their impacts can
influence subsequent recruitment and the survivorship of settled animals. If one wants to
introduce such an event in a given year, or years, then define how many years after the
ENVIRON header. Here we will introduce values that relate to two years of events,
happening in the fifth and eighth projection years. In each case, the proportion of recruits in
that year that survive is listed for each sau. Because there are two years the software expects
two rows (beginning with ‘proprec’). If only one year, then there would be only one ‘proprec’
line (and so on). Following those lines are the survivorships of the settled animals, in this
case, 99 percent are given as surviving, so the effect is primarily through the recruitment.
Note that setting ENVIRON to zero means any environmentally induced effects are set to
NULL and will have no effect. For more details and examples, see the Perturbation within
Projections chapter.

ENVIRON, 0, in how many years will an event occur, 0 means have no events
eyr, 5, 8, which projection years will have an event
proprec1, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, one for each sau
proprec2, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, one for each sau
propNt1, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99,
propNt2, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99,

The passage of any ENVIRON objects through aMSE follows a simple path:

In inputfiles.R readctrlfile -> envimpact -> glb ->

In projection.R doprojections ->

In dynamics.R envimpact is used by both [oneyearcat & oneyearsauC]

The eyr determines which years have an impact.

If the year is in the eyr vector, then:

86

 in sauyearsauC, sigR is reduced by a factor of 10 and the value of the stock recruitment
curve is multiplied by proprec, thus reducing the basline recruitment.

 in oneyearcat, the input numbers-at-size for that year is multiplied by the proportion
surviving the environmental effect: inNt=(inN[,popn] * survP).

5.4.11 PROJLML

Under the PROJECT heading we read in a line for each of the projection years. Assuming
that PROJECT > 0, then readctrlfile() looks for the heading PROJLML. The LML used in the
projections are listed here explicitly so that changes through time can be easily implemented.
There needs to be at least as many defined as the value of PROJECT (which becomes pyrs,
see str1(glb)), here that is 30. The projLML are used to define the selectivity for each of the
pyrs during the projections. Tasmania introduced a west coast LML = 150 in 2024 so that
change should be included in future projections, though obviously it has been omitted from
simulations made before 2024. The LML for the projections are included in the projC object.

PROJLML, need at least the same number as there are projection years

2020,145, the year and the Legal Minimum Length (LML, MLL, MLS) e.g. 140
2021,145,
2022,145,
2023,145,
…
…
2050,145,

5.4.12 CATCHES

If CATCHES is > 0 then one would need to include that number of years of historical catches
by SAU along with the year and LML that was used when the catches were taken. An
example is given below of the required format. If CATCHES = 0, then any data here will be
ignored. If CATCHES > 0 then readctrlfile() looks for a heading CondYears and then reads in
CATCHES rows with the following format. Here the catches are in tonnes.

CATCHES,58, if > 1 then how many years in the histLML

CondYears,LML,6,7,8,9,10,11,12,13, column names for convenience only
1963,127,0,0,0,0,0,0,0,0,, a line of zeros for initial equilibrium state
1964,127,1,1,1,4,3,5,4,1, the year, the LML, the catches by SAU
1965,127,2,3,4,17,15,21,19,5,
…
…
1987,132,31,84,44,251,82,339,195,64,
…
…
2019,140,16,53,5,65,81,179,251,53,
2020,145,7,27,6,39,58,129,227,50,

87

5.4.13 CEYRS

CEYRS is similar to CATCHES in that it defines how many years of cpue data will be read in.
The required format is given below for CEYRS = 29.

IMPORTANT: If CEYRS = 0, then any cpue data will be ignored. Note that in the early years
there appears to be cpue data missing from SAU6 and SAU13, which are present in the latest
years. This is because, in Tasmania, zonation was only introduced in 2000, so cross-zone
blocks such as 6 and 13 cannot be included prior to 2000.

,6,7,8,9,10,11,12,13, again, not used here just as labels

CEYRS,29, if >0 then number reflects number of historical CPUE records by SAU
1992, ,113.4, 94.2, 97.0, 99.4, 98.1, 100.19, ,
1993, ,116.8, 110.38, 109.37, 99.1, 107.88, 102.20, ,
…
…
2018, 106.68, 143.57, 148.43, 133.70, 104.38, 95.01, 106.88, 104.08,
2019, 92.22, 112.70, 107.11, 93.65, 91.89, 86.94, 90.03, 90.78,
2020, 92.01, 113.01, 112.10, 99.10, 92.10, 87.10, 93.10, 92.10,

5.4.14 SIZECOMP

Size-composition data is akin to the biological properties data in being potentially a large
amount of data which might confuse the structure and editing of of the control file. Hence we
use this to refer to a filename containing the required data. If SIZECOMP = 0 then no file will
be read in, otherwise a list of filenames will be expected and these should be stored in the
rundir. The filenames should begin in the row immediately below SIZECOMP.

SIZECOMP,1
lf_90-20.csv

The format of the size-composition .CSV data file should be the following, of course the
years and size classes used should reflect your own data (see the output of writecompdata()
for the full format):

length, sau, 1984, 1985, 1986, … , 2019, 2020
120, 7, 0,0,0, … , 0,0
122, 7, 0,0,0, … , 0,0
124, 7, 1,1,2, … , 0,0
126, 7, 1,3,4, … , 0,0
128, 7, 3,19,26, … 0,0
…, 7,
…, 7,
208, 7, 0,0,0, … , 0,0
210, 7, 0,0,0, … , 0,0

By using this format it is possible to use the function getLFdata() to read the data into the
program. Try ?getLFdata. These data are read in and returned to the program within the
condC object.

88

5.4.15 RECDEV

Conditioning the data on historical catches and cpue will entail searching for an AvRec value
that approximates the long-term productivity of the unfished stock. This should place the
predicted cpue approximately through the observed cpue. However, one can expect to see
deviations, some relatively large. After fitting numerous example models it becomes clear
that average recruitment off the stock recruitment curve provides an inadequate description of
the dynamics of any abalone fishery. It is possible to adjust the rise and fall of the predicted
cpue by imposing recruitment deviates in particular years. Recruitment deviates are expected
to take the form of Log-Normal variation, which vary around the value 1.0. If the model
predicted recruitment matched the Beverton-Holt predicted recruitment exactly this would
imply a recruitment deviate value = 1.0 as each average recruitment value is multiplied by the
deviate. Thus, if recruitment is taken to be lower than the stock-recruitment curve would
predict, then the deviate would be less than 1.0 and if recruitment was greater than expected
the deviate would be greater than 1.0. These are best fitted iniitally using the sizemod R
package but if this fails through, for example, inadequate contrast in available data, then
cruder alternatives exist within aMSE (see Conditioning the Operating Model).

IMPORTANT: By relying primarily on recruitment deviates to match the observed against
the predicted cpue, and the observed vs the predicted size-composition data, we would be
ignoring any extra non-fishing related mortality, such as marine heat-wave events or other
environmentally driven mortality events. But as a first approximation it should be able to
move each SAU closer to the observed state.

The format of the recruitment deviates is as follows:

RECDEV, 58
CondYears, 6,7,8,9,10,11,12,13 This line is here for convenience
1963, -1, -1, -1, -1, -1, -1 -1, -1, The -1 values mean ignore recruitment deviates
1964, -1, -1, -1, -1, -1, -1 -1, -1, The -1 values mean ignore recruitment deviates
1965, -1, -1, -1, -1, -1, -1 -1, -1, The -1 values mean ignore recruitment deviates
1966, -1, -1, -1, -1, -1, -1 -1, -1, The -1 values mean ignore recruitment deviates
…
…
1980,1.207,1.097,0.939,1.014,0.643,0.911,0.504,1.197, some SAU +ve some -ve
1981,1.083,0.140,0.500,1.547,0.591,0.503,0.066,0.645,
1982,0.922,0.915,1.130,0.994,0.790,0.995,0.807,1.067,
1983,1.019,0.933,1.129,1.114,0.887,0.923,0.784,1.360,
…
…

If a line, after the year value is >0 then values for the whole line MUST be given, even if they
are merely set at 1, which implies the recruitment level should be taken off the mean of the
stock recruitment relationship.

The values illustrated were derived from simple code that first searches for an optimum
AvRec value, and then searches, sequentially through each SAU, for an optimum set of
recruitment deviates between a given range of years. One needs to account for the expected
time-lag in years between when a cohort might settle and when it then will begin to enter the
fishery. The values included in the ctrlfiletemplate() function were obtained using sizemod to
fit each sau’s data to an array of parameters, including recruitment deviates.

89

5.5 The saudataEG.csv File

This file is identified in the START section of the control file. Like the control file the
saudataEG.csv file can also start off with some optional descriptive text lines.

SAU definitions listing Probability density function parameters for each variable
These are randomly allocated to each population except for the proportion of recruitment,
which is literally allocated down in the popREC section

As many of these descriptive lines as required can be included. The start of input that is used
by the MSE is signaled by the SPATIAL heading (remember use capital letters for the section
headings where indicated and getting the spelling correct are important). The saudataEG.csv
file contents are read in by the function readsaudatafile(), and each variable is identified and
selected by its name (so type carefully or use the datafiletemplate() function to make a start).
Despite this approach, reading the values is still split into groups that relate to their function.
First there are lines describing the implied geographical spatial structure being simulated,
then comes a matrix of properties for each SAU, following on from the PDFs heading.

Not all the input variables are used to define probability density functions. Thus, each of the
nsau, saupop, saunames are defined explicitly after deciding on the geographical structure to
impose. They need to be listed in the order in which they are expected to occur along the
coast. Each population is a member of a given SAU, and here we are using the Tasmanian
block number as the SAU index (and the saunames). Each SAU can have a different number
of populations. These three SPATIAL inputs appear to be duplicates of those in the
controlEG.csv, and they are, but are used for different purposes.

SPATIAL

nsau, 8, number of spatial management units eg 6 or in TAS’s case 8
saupop, 3, 3, 5, 7, 9, 9, 12, 8, number of populations per SAU in sequence
saunames, 6, 7, 8, 9, 10, 11, 12, 13, labels for each SAU; not used

5.5.1 PDFs

PDFs, 32,

This line is read in to determine the number of variable values to be read (the rows to the
matrix). The number of columns of the matrix are defined by the nsau defined above.

The precision with which this matrix is filled will constitute a large part of any conditioning.
Approximate and plausible values will produce a generic MSE whereas, tuning the matrix to
the biological properties of a particular zone, and especially particular SAU, as best one can,
will generate a much more specific MSE, especially if that is followed up by conditioning the
resulting modelled stock on historical fishery data. Thus, if one then included historical
catches and other fishery data the result would be as realistic a modelled representation as
one could get when using such a complex spatial structure and without an enormous amount
of data (which no-one has).

Here we only imply a plausible and generic zone, as can be inferred by the repeated values
(which will still lead to different values between populations because variability is included
as each population is generated - variables prefixed s, are all large enough to influence a
random number). If specific values for a given population are wanted then set the respective

90

variation value to 1e-08. All variables are sampled from a Normal distribution except for the
average unfished recruitment, which strongly defines the upper productivity of each
population, and is sampled from a log-normal distribution (see the function definepops()).

5.5.2 Growth

The parameters of the Inverse Logistic model describing growth (Haddon et al, 2008;
Haddon & Mundy, 2016). Alternative growth functions will be implemented in the future, if
desired, and will be selected in this section. In each case there is the main parameter
(MaxDL, L50, L50inc, and SigMAx) followed immediately by the variation to be attributed
to a given population’s value (obtained through sampling from a normal distribution). If exact
or specific values are wanted for the populations in a given SAU, then set the respective
variation value to 0. Estimates of MaxDL and L95 (L50inc = L95 - L50) can be obtained for a
given sau by using sizemod.

DLMax ,26, 30, 30, 34, 34, 34, 34, 29, maximum growth increment
sDLMax ,2, 2, 2, 2, 2, 2, 2, 2, variation of MaxDL within each SAU
L50 ,135.276, 135.276, 135.276, …, …, …, …, …, Length at 50% MaxDL
sL50 ,2, 2, 2, 2, 2, 2, 2, 2, variation of L50
L50inc ,39, 39, 39, 39, 39, 39, 39, 39, L95 - L50 = delta =L50inc
sL50inc ,1.5, 1.5, 1.25, 1.25, 1.25, 1.25, 1.25, 1.25, variation of L50inc
SigMax ,3.3784, 3.3784, 3.3784, …, …, …, …, …, max var around growth
sSigMax ,0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, var of SigMax

5.5.3 LML

It is not impossible that different SAU operate under different LML, this allows for the
generation of the equilibrium zone to reflect such variation if present. If, however, historical
catches are available and are used, they are defined along with the LML used in each year
and those LML are used in the zone definition instead. The entry here is only for situations
where no historic data are used, but it still needs to be present under all circumstances.

LML ,127, 127, 127, 127, 127, 127, 127, 127, Initial legal minimum length

5.5.4 Weight-at-Size

The weight-at-size relationships for each population are defined using the standard equation:

𝑊, ൌ 𝑎𝐿

which defines the weight of animals in population 𝑝 at length 𝐿. For this we need both the
𝑎 and 𝑏 parameters.

It was found in Haddon et al (2013; see pages 208-209) that there was a power relationship
between the 𝑏 parameter and its corresponding 𝑎 parameter. This was useful but lacked
any intuitive sense. An examination of weight-at-size relationships within sau (see the
appendix on _weight-at-size vs_location) found that within sau these relationships mainly
had very similar values for the `a` parameter with minor variation in the `b` parameter. While
that variation was low, it nevertheless led to important differences between populations. So

91

low variation is included in the exponent, `b` but only extremely low variation included for
the `a` parameter.

Wtb ,3.161963, 3.161963, 3.161963, …, …, …, …, …, weight-at-length exponent
sWtb ,0.000148, 0.000148, 0.000148, …, …, …, …, var of Wtb
Wta ,6.4224e-05,5.62e-05, …, …, …, …, …, …, power curve intercept
sWta ,1e-08, 1e-08, …, …, …, …, …, …, variation of Wta

5.5.5 Natural Mortality

This is a troublesome variable. Previous work has generally assumed a natural mortality rate
of about 0.2, but this suggests that most animals would be close to senile by the age of 23
(only 1 percent would be expected to survive that long). However, very many very large
animals have been found, despite their growth characteristics implying that to reach such
sizes would take much longer than 23 years (given the very slow growth rates of large
animals). This casts doubt on the notion of M = 0.2, which, if traced, stems from some rather
limited, and potentially flawed (blocking respiratory pores with tags) tagging data from
decades ago. As with the growth characteristics, tagging may negatively affect survivorship,
this potentially affecting any early tagging study of natural mortality (biasing it high). Here
we have selected 0.15 as the mean or base-case against which to compare the rest, but the
uncertainty means that it would be worthwhile comparing the outcomes of any HS when M =
c(0.1, 0.125, 0.15, 0.175, and possibly even 0.2).

Me ,0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, Nat Mort
sMe ,0.005, 0.005, 0.005, 0.005, …, …, …, …, var of Me

5.5.6 Recruitment

The average unfished recruitment is a major influence on the productivity of each SAU and
population. During conditioning it is recommended that this be one of the first variables to
adjust to set-up each population’s unfished production. At very least it should be possible to
determine the relative long-term production of each SAU, and this can be used as a guide to
determine the relative productivity of each SAU, which should then be distributed among its
constituent populations. If a time-series of GPS data-logger information is available (or
potentially a series of surveys) this can be used to scale the relative productivity of each
constituent population within each SAU (this is done in the propREC section of the
saudataEG.csv file, as described below). The AvRec unfished recruitment (𝑅0) value, in each
case, is in linear-space for ease of use, but is commonly expressed as log(AvRec) in the
model. This is defined using steepness as shown in the equations within the zoneCOAST
section above. Estimates of AvRec for each sau can be obtained by using sizemod.

AvRec,217500,410000,185000,905000,760000,1440000,1350000,355000,
sAvRec,0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, R0 variation
defsteep ,0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, Beverton-Holt steepness
sdefsteep ,0.0125, 0.0125, 0.0125, 0.0125, …, …, …, ….,

92

5.5.7 Emergence

Emergence has been studied in Tasmania through an examination of the growth of encrusting
animals and algae on the animal’s shells. The cover by algae (even encrusting algae) being
taken as evidence of emergence (exposure to light). This only becomes influential if the
emergence curve overlaps with the selectivity curve, which may happen when the LML is
low. If no emergence data is present, then just set values so that the emergence curve always
runs at smaller sizes than the selectivity curves (see later). These values below are mostly
invented (for now; from very limited data) but would influence availability when the LML
was down at 127mm.

L50C ,126.4222, 126.4222, 126.4222, …, … , length at 50% emergent
sL50C ,0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
deltaC ,10, 10, 10, 10, 10, 10, 10, 10, length at 95% - 50% emergent
sdeltaC ,0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

5.5.8 CPUE

Earlier versions of aMSE, assumed linearity between cpue and exploitable biomass and a
maximum cpue was used to designate or scale the predicted cpue to match nominal observed
cpue levels. Now, however, the option (the very much preferred option) is to assume hyper-
stability of cpue (a non-linear relationship between cpue and exploitable biomass) and this
has made the next two parameters redundant. They are retained however, as the maximum
cpue that would be obtained in an unfished population can be stored in this variable once it is
calculated. The values contained in this variable are no longer used but nsau values are
required in each row in all cases. The variation can be set to zero (again, no longer used).

MaxCEpars, 0.4,0.425,0.45,0.475,0.45,0.45,0.375,0.3, max cpue t-hr
sMaxCEpars, 0, 0, 0, 0, 0, 0, 0, 0,

5.5.9 Selectivity

Even though there is an LML, the precision with which abalone are taken with respect to the
LML is not always perfect with some legal sized animals being left behind and occasionally
some just sub-legal being taken (though these observations may be due to measuring error).
Here we use a simple addition to the selectivity ogive used for each population. The selL95p
parameter can be estimated within sizemod, and often has values between 4 - 6. The
selectivity curves used in the modelling (which are a combination of selectivity and
availability) are illustrated in the Fishery tab of the MSE output.

selL50p ,0 ,0, 0, 0, 0, 0, 0, 0, L50 of selectivity, 0 = no bias
selL95p ,5, 5, 5, 5, 5, 5, 5, 5, L95 of selectivity

5.5.10 Size-at-Maturity

It was found in Haddon et al (2013; see pages 210-211) that there were relationships between
the two parameters used to define the logistic maturity-at-size relationships for different
populations. A fixed parameter value of -16 for the 𝑎 parameter led to a range of plausible

93

values for the 𝑏 parameter. A better alternative is to use size-at-maturity data from each sau
if it is available. If available it can be analysed using the biology package (the values
included in the file created by the datafiletemplate() function derive from maturity samples
analysed in that way.

SaMa, -22.3,-22.3,-22.2,-22.1,-24.0,-15.2,-21.2,-22.1, maturity logistic a par
L50Mat, 98.8,98.8,116.3,116.7,122.9, 112.2,121.1,105.8, L50 for maturity b = -1/L50
sL50Mat, 3, 3, 3, 3, 3, 3, 3, 3,

5.5.11 cpue Hyper-stability parameter

The lambda parameter in the equation

𝐼௬ ൌ 𝑞𝑒𝑠𝑡 ൈ 𝐵ா
ఒ

can define a linear relationship between cpue and exploitable biomass only when lambda or 𝜆
has a value of 1.0. If 𝜆 ൏ 1.0, then that relationship curves down to generate hyper-stable
cpue values. Hyper-stability of, at least Tasmanian blacklip abalone, has now been
demonstrated using the GPS logger data, and so now, in Tasmania, the base-case being used
assumes a 𝜆 ൌ 0.75. No variation is currently included in that parameter. The qest
parameter (estimated within sizemod, although it could be approximated by trial and error) is
designed to scale the exploitable biomass (raised to the exponent 𝜆) so that the resulting cpue
matches the observed nominal scale. If 𝜆 ൌ 0.5 this would be equivalent to using the
square-root of the exploitable biomass, which is obviously a smaller number than the
original, hence the scaling factor qest needs to adjust for that appropriately for each SAU.

lambda, 0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75 ,
qest, 4.75, 2.25, 5.17, 1.63, 1.27, 0.77, 0.61, 1.45,

5.6 propREC

The propREC section provides details of the distribution of the recruitment levels across the
populations within each SAU. The three columns of values are the SAU, the population index,
and its expected proportion of its respective SAU recruitment each year. These values need to
be set manually during the conditioning and can be varied until the dynamics approximate the
desired dynamics. In Tasmania, once again the GPS logger data were able to be used to
identify within each sau, areas of persistent productivity, which were equated to the
populations. These varied in area and in average yield, but provided a more objective way to
define the population structure within each sau than simply ascribing different numbers of
populations and proportions of recruitment.

SAU,pop,propR
6, 1, 0.742, in SAU 6 about 1/6 of recruitment goes to pop 1
6, 2, 0.094, in SAU 6 most recruitment goes to pop2
6, 3, 0.163, in SAU 6 almost no recruitment goes to pop3
7, 4, 0.203, in SAU 7 a more even distribution of recruitment occurs
7, 5, 0.59
7, 6, 0.207

94

8, 7, 0.041
…
…
12, 48, 0.03
13, 49, 0.121
13, 50, 0.084
13, 51, 0.124, in SAU 13 there are 8 populations with variable levels
13, 52, 0.164
13, 53, 0.215
13, 54, 0.126
13, 55, 0.062
13, 56, 0.104

That completes the current structures and formats of the control.csv, saudata.csv, and size-
composition data files.

95

6. Conditioning the MSE with the sizemod Package

6.1 Introduction

A Management Strategy Evaluation can attempt to simulate a real-world fishery.
Conditioning the operating model involves modelling the properties of the fished stock so
that the dynamic behaviour of the operating model mimics, or is at least has strong
similarities to, the observed dynamics of the real-world fishery. Where operating models
assume no or only simple spatial structure, it is sometimes possible to use standard stock
assessment modelling methods to fit the operating model to available data from the fishery.
This would ensure that estimates of productivity and other aspects of how the stock responds
to fishing pressure are as good as the available data permits. Fitting the operating model to
available data would also provide estimates of uncertainty around key parameters, which
could then be included in the MSE simulations to provide a relatively realistic reflection of
how the stock could respond when using alternative harvest strategies to provide management
advice through time.

In Australia (and elsewhere) abalone stocks tend to be made up of meta-populations with
notoriously complex spatially structures, with each component population being mostly self-
sustaining through localized recruitment processes meaning limited larval movement and
with very limited to no effective movement of settled animals. One outcome of such spatial
structure is that most abalone populations can be considered data-poor (Haddon et al., 2005;
Orensanz et al., 2005; Parma et al., 2003). Parma et al. (2003) and Orensanz et al. (2005)
discuss the notion of S-fisheries, which are generally spatially structured (meaning patchy
with heterogeneous biological properties), often targeting species of lower economic
importance, and potentially subject to serial depletion. Wilson et al, (2013) added to this list
of properties, by referring to the common mismatch between scale of fishing, scale of
reporting, and scale of management (lots of S’s, hence S-fisheries). Most importantly, for this
discussion, such fisheries do not conform to the assumptions of the classical dynamic-pool
notion of fish stocks. For a fishery to be a dynamic pool then some population event (be it a
fishing event, a recruitment event, etc) will affect the whole stock within a relatively short
period (often, at most, within a year). This requires there to be relatively high levels of
mobility and mixing of individuals, or at least high levels of larval movement. Such an
assumption may well be valid in scale-fisheries but is far less often true in fisheries for
sessile, sub-tidal, hand-gathered species. Abalone cannot be considered to be of lower
economic value but closely meet every other criterion for S-fisheries.

Given the complex spatial structured exhibited by Australian abalone fisheries it would be
invalid to attempt a zone-wide assessment of a fishery’s dynamics and expect such a thing to
reflect the observed dynamics at smaller geographical scales. At best, it might be possible to
conduct an assessment at the smallest spatial scale at which data from the fishery has been
reliably collected. In the case of the Tasmanian west coast, that scale is that the level of
statistical block (= sau or SAU).

96

Figure 6.1: A sketch map of the statistical blocks or sau in the current Tasmanian Western Quota Zone, which are included
in the Tasmanian MSE. Block or SAU numbers are as labelled. sau6 and sau13 have a ‘W’ postfix because, surprisingly,
they also have subblocks in other zones.

Generally, high value species around the world are assessed using relatively complex stock
assessment models with statistical integrated assessment models becoming more common
(Maunder and Punt, 2013; Punt et al., 2013). High value species such as abalone are not often
considered to be data-poor species, but there are many difficulties in collecting representative
data from such a patchily distributed, highly variable, sub-tidal species. In the case of
Tasmanian blacklip abalone (Haliotis rubra) data collection with respect to the biological
properties of size-at-maturity, growth, and size-structure, has continued for decades.
However, the extent and complexity of the Tasmanian coastline means that many areas and
depths have no such biological samples at all. Spatial complexity and heterogeneity becomes
a problem when attempting to condition the aMSE operating model to mimic the dynamics
of an Australian abalone stock (see the appendix on Maturity vs Location for an example of
small spatial scale biological heterogeneity).

6.1.1 What Models are Possible?

Surplus production models (Prager, 1994; Haddon, 2011, 2021) have been used with some
success with catches and standardized CPUE data from some Tasmanian abalone statistical
blocks. The SAU on the west coast with the most data (SAU 9 - 12) provided relatively

97

convincing model fits to the available data. The sparser data from SAU 6 - 8 generated less
stable model fits, mainly because catches, and therefore number of records, were relatively
low and the limited data were therefore more variable. The original idea for conditioning the
Tasmanian MSE was to use such models to estimate the productivity of each block/SAU and
continue improving the fit to observations from there. One problem with this strategy is that
simple surplus production models assume that recruitment is also a simple and deterministic
process. Unfortunately for this strategy, in Tasmania, abalone recruitment is sometimes
extensive and far from average across whole quota zones and at other times appears patchy
and variable in intensity. In the operating model, annual recruitment is modelled using a
Beverton-Holt stock recruitment curve. Exploratory attempts to impose trial and error
recruitment deviations from the modelled averages into the surplus production models,
demonstrated that recruitment deviates were necessary for the predicted CPUE and predicted
size-composition of the catch to approximate the observed data. However, attempting to
introduce such artificial recruitment deviates was clumsy at best and often led to implausible
model inputs at worst. Another disadvantage of using surplus production models is that they
ignore what is known about the biological properties of the different areas (differing growth,
etc.), and they cannot use any of the size-composition of catch data, which are now regularly
collected, when fitting the model. These disadvantages are a problem because together they
mean such models cannot provide strongly defensible estimates of any recruitment deviates
that may have occurred.

Despite the serious issue regarding how representative of the multiple populations expected
in any one SAU standard sampling can be, the use of a size-based integrated assessment
model was explored to determine whether it could provide more plausible estimates of
productivity and, more especially, of the expected recruitment dynamics during the known
history of the fishery. An R package, called sizemod has been and continues to be developed
to simplify the application of such a model; it is documented elsewhere and within the
sizemod package. Here we will focus on different ways of using it and what the modelling
results imply for conditioning aMSE’s operating model.

6.2 Using sizemod as a Size-Structured Production Model

The R package sizemod contains a number of data files that allow for the illustration of how
to use the software. One data set, fish, contains the fishery data, another, sizecomp, contains
observed size-composition data from catches across a number of years, and another setup
contains other details required to get a model run to work (see sizemod documentation,
which also contains a formal description of model structure.).

require(sizemod)
data(fish)
data(sizecomp)
fiscomp <‐ NULL
omega=c(1,1,0,0) # include data streams for cpue and size‐composition, no FIS
data(setup)
ctrl <‐ setup$ctrl
glb <‐ setup$glb
constants <‐ setup$constants
glb$maxage=50
glb$phase=1
glb$lambda <‐ 0.75 # CPUE and Exploitable biomass relationship now non‐linear
when first fitting SA model set glb$sigce = 0, so between year CPUE

98

if (glb$sigce == 0) { # variability is first approximated
 glb$sigce <‐ getrmse(fish,invar="cpue",inyr="year",natlog=TRUE)$rmse
}
biol <‐ makebiology(glb$midpts,constants) # define biological properties
kable(biol[50:59,],digits=c(3,3,3,3))

Table 6.1: Proportion mature, weight-at-length, proportion emerged, and maturity x weight at length for length classes 100 -
118 mm. The full range of sizes is 2 - 210 mm in Tasmania.

 mature WtL emergent MatWt

100 0.024 131.371 0.000 3.102

102 0.033 139.920 0.001 4.648

104 0.047 148.843 0.001 6.928

106 0.065 158.149 0.002 10.257

108 0.090 167.845 0.004 15.056

110 0.123 177.942 0.008 21.853

112 0.166 188.448 0.014 31.265

114 0.220 199.372 0.025 43.929

116 0.286 210.722 0.044 60.369

118 0.363 222.508 0.077 80.825

Figure 6.2: Fishery history in SAU 12 in the western zone in Tasmania. Catches in tonnes, CPUE in kg/hr.

The catch time-series exhibits some remarkable variation from year to year (see Figure 6.2).
The 100t increase between 1999 and 2001 in SAU12 was a response to the introduction of
quota zones, which allocated a TAC to the west of Tasmania with the aim of distributing dive
effort more widely around the State. The CPUE time-series only starts in 1992 because prior
to that the data are an unknown mixture of records by month, day, individual diver, and

99

collections of divers. A change in the reporting requirements in 1992 (daily by individual
diver), and associated changes to the database helped solve those issues.

The size-composition data used was generally collected as samples of at least 100 individual
measurements from individual landings by divers. Hence the early observations were often
the outcome of sampling only very few landings. When combined with the 2mm size-classes
in the assessment and operating models, this explains why the early data exhibits such
spikiness. One great value of the size-composition data is that when it is compared with the
theoretical unfished size-distribution of catches it provides a measure of the level of depletion
imposed upon the populations within SAU 12. The size-composition data remains
surprisingly noisy. For example, in 2019, the catches appear to be biased constistently high
off the LML by about 5mm. Whether this was because divers had been instructed to try to
ignore smaller animals for marketing reasons, or some other reason, is unknown. It suggests
that time-blocking of any selectivity parameters might lead to improvements in model fit,
although, once again, the question of whether the data are representative of an area as large as
an SAU remains problematic (see Figure 6.1); the coastline of sau12 extends across about 0.4
of a degree of latitude and 0.5 degree of longitude.

Figure 6.3: The observed size-composition of catches sampled from 1990 - 2020, with 11 missing years. The sample sizes
increased from 2007 onwards. The vertical blue lines are the LML in each year; note the increase in 2020.

100

6.2.1 The Initial Parameters

The model is currently set up to estimate about 35 parameters (depending on how many
recruitment deviates are included), all of which are log-transformed to help stabilize the
estimation process. These include the unfished recruitment (LnR0), the MaxDL of the inverse
logistic growth curve used (Haddon et al, 2008), the L95 of the growth curve, the catchability
(implemented to allow for a non-linear relationship between CPUE and exploitable biomass =
hyperstability), and the difference between the 50% and 95% selectivity curve. In addition to
these five primary parameters there are 30 recruitment deviates from 1985 - 2014. The
number of deviates estimated depends upon the number of years of informative size-
composition data there are available. Preliminary values for these are put into the model
using a 35 x 2 array, with the second column containing a zero if the parameter is to be held
constant and any number greater than zero (we use 1) if it is to be estimated by the model. By
setting all the recruitment deviates to zero (back-transformed = 1.0), and setting the model
not to estimate their value, it is possible to run sizemod as a size-structured surplus
production model.

Difference in equilibrium population Numbers‐at‐size > 10

Difference in equilibrium population Numbers‐at‐size > 10

The initial parameters making up the pindat were obtained partly by examining the outcome
of tagging estimates of growth in the area, and partly (mainly) by trial and error until the
predicted CPUE at least approximated the shape of the observed CPUE (Figure 6.4).

Figure 6.4: Predicted CPUE (red, 1964 - 2020) relative to standardized observed CPUE (black, 1992 - 2020) when
modelled using the initial parameter values before fitting the model using maximum likelihood.

6.2.2 The 5-Parameter Model Fit

By searching manually for initial parameters that provide an approximate solution, as
suggested by the two curves approaching each other (Figure 6.4), then formally fitting the
model to the available data becomes more efficient (see appendix for all the code used).

101

starttime <‐ Sys.time()
 outmod <‐ fitlbm(pindat,negLLP,funk=dynamics,biol=biol,glb=glb,fish=fish,
 constants=constants,omega=omega,sizecomp=sizecomp,
 fiscomp=fiscomp,both=TRUE,tol=1e‐06,initH=0)

initial value 2565.279326

iter 10 value 1591.668939
iter 20 value 1527.720011
final value 1527.056570
converged
 0: 1527.0566: 14.9410 3.16484 5.13042 ‐1.23772 ‐5.06285
Difference in equilibrium population Numbers‐at‐size > 10

 fitpar <‐ outmod$ans2$par
 optpar <‐ allpin
 optpar[modin$notfix] <‐ fitpar
 neglogL <‐

negLLP(pars=fitpar,initpar=optpar,funk=dynamics,biol=biol,glb=glb,
 fish=fish,constants=constants,notfixed=modin$notfix,
 omega=omega,finalcomp=sizecomp,fiscomp=fiscomp,full=TRUE)

Difference in equilibrium population Numbers‐at‐size > 10

 likelihoods <‐ cbind(oldlogL,neglogL,(abs(oldlogL ‐ neglogL)))
 print(round(likelihoods,4))

 oldlogL neglogL
LLce 1163.1697 67.6058 1095.5638
compL 1401.0268 1457.8080 56.7812
penaltyR 0.0000 0.0000 0.0000
sigmaCE 0.0337 0.0337 0.0000
wtsc 0.0070 0.0070 0.0000
penLnR0 0.3574 0.9994 0.6420
penDL 0.0000 0.0370 0.0370
pencatch 0.0000 0.0000 0.0000
penH 0.7255 0.6053 0.1202
penaltyCE 0.0000 0.0000 0.0000
totalL 2565.2793 1527.0556 1038.2238
sad 1020.8780 288.1041 732.7739
sadce 1014.4832 283.4456 731.0376
sadcomp 6.3948 4.6585 1.7363
sigmaR 0.5000 0.5000 0.0000
lambda 0.7500 0.7500 0.0000
steep 0.7000 0.7000 0.0000
M 0.1500 0.1500 0.0000
LLsc 200720.4761 208855.3306 8134.8546
LLfis 0.0000 0.0000 0.0000
LLfissc 0.0000 0.0000 0.0000
wtfis 0.0070 0.0070 0.0000
fiscompL 0.0000 0.0000 0.0000
limLnR0 16.0000 16.0000 0.0000
maxDL 32.0000 32.0000 0.0000
minDL 23.0000 23.0000 0.0000

102

 pindat[modin$notfix,"param"] <‐ fitpar
endtime <‐ Sys.time()
print(endtime ‐ starttime)

Time difference of 2.026953 secs

With only five parameters the model fit is generally very quick. Later, when we fit
recruitment residuals the solution can take more time to be found. The improvement in model
fit between the start and the 5-parameter fit is apparent both in the reduced total negative log-
likelihood from 6462 to 2701, but in the reductions to both the log-likelihoods for CPUE
(LLce) and the composition data (compL). When this model fit is plotted in full the
improvement in fit to CPUE is also visible, although overall it remains poor, appearing to be
a one-way decline.

Difference in equilibrium population Numbers‐at‐size > 10

Figure 6.5: Summary plots for the fit to the model when only fitting the first five parameters and treating sizemod as a size-
structured surplus-production model.

103

While the model fit will automatically provide an estimate of current depletion for both the
mature biomass (important for recruitment dynamics) and exploitable biomass (important for
the estimate of CPUE), it should be noted that the final predicted CPUE is well above the
observed CPUE (Figure 6.5). The trends in the residuals also indicate that despite the
improved model fit there remain some significant biases that demonstrate a serious model
misspecification. The model has done its best to fit to the data, but the assumption of constant
recruitment (bottom right panel) does not provide for sufficient flexibility for the modelled
dynamics to be able to fit closely to the data.

The fit to the size-composition data also has issues, although it is remarkably good in some
years, in particular 2012, 2013, 2020 (Figure 6.6). Surprisingly, even the earlier years from
1994 to 2006, where sample sizes were relatively small, the fits that were produced are
clearly approximating the distributions despite the noisiness of the data. Notice that some
years, when the data were first considered (2014, 2015, and 2019), appear unusual in that the
rising edge of the commercial data is right shifted away from the LML.

Figure 6.6: Using sizemod as a size-structured surplus-production model generates plausible model fits to some of the year

104

of size-composition data.

Importantly, the descending edge of the observed and fitted size-composition distribution,
when compared to the theoretical unfished distribution contributes evidence towards
estimating the depletion in each year (assuming selectivity is not dome-shaped; the model
implemented logistic selectivity).

Figure 6.7: A comparison of all years of observed size-composition of catch data with the predicted unfished equilibrium
size-distribution of the population. The left-ward shift of the mode of the observed data away from the mode of the unfished
population is indicative of depletion. The lines have different heights because the proportions across each curve all sum to
equal 1.0, ‘obs-nas’ is the observed numbers-at-size.

105

6.3 The 35-Parameter Model Including Recruitment Deviates

To allow the estimation of recruitment deviates it is only necessary to alter the ‘phase’
column in pindat from zero to 1. This could be done in sub-groups gradually, if problems
arose during the fitting process. Alternatively, if the model has problems converging on a
biologically plausible solutions then one can manually adjust some of the recruitment
deviates time-lagged prior to increases in CPUE to improve the initial fit of predicted CPUE
to that observed. This approach is sometimes needed to aid in obtaining a final plausible
model fit. However, for data from statistical block 12, model fitting was able to proceed
directly to estimating 35 parameters. With this many parameters, each iteration in the
minimization takes longer, though now that Rcpp routines have been included to speed the
calculations the whole process is much faster than the original R only code.

pindat[6:35,"phase"] <‐ 1
pindat[6:35,"param"] <‐ 0.1
pindat[1:5,"param"] <‐ c(14.25,3.29,5.2,‐0.46,1.36)

Now, when the model is refit to the data it will alter all those zeros to adjust the recruitment
in each of those years (1985 - 2014) and thereby improve the fit to the CPUE and size-
composition data.

modin <‐ getpin(pindat)
pin <‐ modin$pin
notfix <‐ modin$notfix # in this case all parameters are not fixed
allpin <‐ modin$allpin
allpin[notfix] <‐ pin
oldlogL <‐ negLLP(pars=pin,funk=dynamics,initpar=modin$allpin,
 biol=biol,glb=glb,fish=fish,constants=constants,
 notfixed=modin$notfix,omega=omega,finalcomp=sizecomp,
 fiscomp=fiscomp,full=TRUE)

Difference in equilibrium population Numbers‐at‐size > 10

starttime <‐ Sys.time()
 outmod2 <‐ fitlbm(pindat,negLLP,funk=dynamics,biol=biol,glb=glb,fish=fish,
 constants=constants,omega=omega,sizecomp=sizecomp,
 fiscomp=fiscomp,both=TRUE)

initial value 2845.113909

iter 10 value 1407.251819
iter 20 value 1354.454309
iter 30 value 1333.216319
iter 40 value 1328.034588
iter 50 value 1327.222530
iter 60 value 1326.524064
iter 70 value 1325.738847
iter 80 value 1325.237478
iter 90 value 1324.613119
iter 100 value 1323.847725
iter 110 value 1323.340747
iter 120 value 1323.224617
iter 130 value 1323.127476
iter 140 value 1323.085858

106

iter 150 value 1323.082623
iter 150 value 1323.082623
iter 150 value 1323.082622
final value 1323.082622
converged
 0: 1323.0826: 14.0987 3.33405 5.18416 ‐0.433344 1.40928
0.0578526 0.129311 0.227778 ‐0.254128 0.773467 0.805066 0.445180 0.200832
0.423153 0.533578 0.0481762 ‐0.140197 0.435316 ‐1.27799 0.513452 0.395607
0.363445 0.116582 0.819583 0.0648155 0.595222 0.117573 0.0616644 0.0915990
‐0.267316 0.796522 0.328776 0.501531 ‐1.10073 0.890477
 25: 1323.0799: 14.0982 3.33385 5.18448 ‐0.433050 1.41080
0.0593352 0.132020 0.233038 ‐0.250369 0.770941 0.808362 0.444856 0.202573
0.422683 0.533153 0.0479880 ‐0.140003 0.436237 ‐1.27846 0.515117 0.395481
0.363972 0.118817 0.820425 0.0653228 0.595210 0.116981 0.0615609 0.0929899
‐0.265075 0.795719 0.332357 0.500808 ‐1.09839 0.890727
 50: 1323.0613: 14.0769 3.33441 5.18561 ‐0.425872 1.41083 0.252045
0.267807 0.233927 ‐0.190501 0.793396 0.841358 0.445018 0.234640 0.426804
0.551504 0.0671789 ‐0.124130 0.455780 ‐1.28758 0.533297 0.410752 0.376703
0.139459 0.833419 0.0852341 0.608918 0.135467 0.0779464 0.107331 ‐0.236060
0.802577 0.364037 0.500774 ‐0.989233 0.894203
Difference in equilibrium population Numbers‐at‐size > 10

 fitpar <‐ outmod2$ans2$par
 optpar2 <‐ fitpar
 neglogL <‐ negLLP(pars=fitpar,initpar=optpar2,funk=dynamics,biol=biol,
 glb=glb,fish=fish,constants=constants,
 notfixed=modin$notfix,omega=omega,finalcomp=sizecomp,
 fiscomp=fiscomp,full=TRUE)

Difference in equilibrium population Numbers‐at‐size > 10

 likelihoods <‐ cbind(oldlogL,neglogL,(abs(oldlogL ‐ neglogL)))
 print(round(likelihoods[1:12,],4))

 oldlogL neglogL
LLce 1427.5735 ‐68.0738 1495.6473
compL 1411.6218 1390.3194 21.3024
penaltyR 0.0000 0.0000 0.0000
sigmaCE 0.0337 0.0337 0.0000
wtsc 0.0070 0.0070 0.0000
penLnR0 0.2821 0.0937 0.1884
penDL 0.0000 0.0000 0.0000
pencatch 0.0000 0.0000 0.0000
penH 5.6366 0.7218 4.9148
penaltyCE 0.0000 0.0000 0.0000
totalL 2845.1139 1323.0610 1522.0529
sad 659.8509 34.2540 625.5969

 pindat[modin$notfix,"param"] <‐ fitpar
endtime <‐ Sys.time()
print(endtime ‐ starttime)

Time difference of 50.60049 secs

107

The negative log-likelihoods have improved in that the LLce for CPUE has decreased from
67.606 in the 5-parameter fit to -68.074 and the compL for the size-composition data has
decreased from 1458 down to 1390. When the data streams are completely consistent with
each other and if the recruitment penalty has been omitted, the minimizer would have kept
working until the fit to the CPUE and size-composition can be as perfect as possible. Not
surprisingly, the resulting dynamics are rather different from that produced by the size-
structured surplus-production model version. Other details of the model fit, such as the
various penalties and limits are explained in the documentation to sizemod. sizemod includes
a bias-ramp on the recruitment deviates, uses the Francis (2013) weighting on the cpue index
of relative abundance, and iterative re-weighting of the relative weight given to the size-
composition data. Once again, these details are described in detail and explained in
sizemod’s documentation; using the built-in data sets these details have already been
attended to in the example.

Difference in equilibrium population Numbers‐at‐size > 10

Figure 6.8: Summary plots for the fit to the full model fitting all 35 parameters. The fit to the cpue appears perfect though
the residual plot demonstrates that differences are still present.

108

Figure 6.9: Fitted CPUE from the 5-parameter size-based surplus-production version, and the full model compared. Note
the greater depletion level implied by the full model.

Comparing the model fits to the size-composition data (Figure 6.10) illustrates that the
differences are more subtle than with the CPUE. Nevertheless, clear improvements are
exhibited by the modified expected numbers-at-size in the catch. There are numerous
improvements in the fits to the earlier noisy years of data, whereas in the years with larger
samples the improvements are seemingly negligible or more subtle. However, for example, in
the 2011 data the fit to the descending limb of the distribution is a clear improvement, as is
the increased height of the rising limb.

109

Figure 6.10: Comparison of the size-composition of catch data fitted to the 5-parameter surplus-production version (red
line), and the 35-parameter model (blue line).

6.3.1 Non-Linearity of CPUE

The situation modelled in this scenario used a 𝜆 ൌ 0.75. This may be understood by
examining the following equation:

𝐼௧ ൌ 𝑞𝐵௧
ఒ  ሺ6.1ሻ

where 𝐼௧ is the predicted CPUE in year 𝑡, 𝑞 is the catchability, 𝐵௧ is the exploitable biomass
in year 𝑡, and 𝜆 is a parameter that can alter the relationship between CPUE and exploitable
biomass. In most stock assessments, 𝜆 ൌ 1 is assumed, which asserts a linear relationship.
By using 𝜆 ൌ 0.75 the relationship between curvi-linear, which when illustrated clarifies
the implications of the equation (Equation 6.1).

110

Figure 6.11: The predicted relationship between CPUE and exploitable biomass when lambda = 0.75. The black line
reflects how it would look if lambda = 1.0. Where the red line appears solid it reflects the range over which observed CPUE
varies from 1992 - 2020, where it is dashed reflected where there is no usable CPUE data.

Note that the maximum CPUE predicted when 𝜆 ൌ 0.75 is 100kg/hr lower than if a linear
relationship was used. This value appeared to divers to be more realistic when the fishery first
started, as, at that time, handling time would have been much greater, and the risk of
disturbing other abalone when removing one would mean many would lock down leading to
damage if removal were attempted.

6.4 Initial Discussion

A classical, purely biomass based surplus production model can fit the abalone data
remarkably well (Haddon, 2011, 2021), however, it only provides estimates of productivity
and no information on the size-composition of the catch or the growth parameters. It also
turns out to be relatively unstable for some of the statistical blocks and is extremely sensitive
to variation in its parameters, especially the r parameter. The 5-parameter size-structured
surplus production model has at least three advantages over the classical biomass-dynamic
model:

1) by including the available size-composition data it can provide information concerning
selectivity and growth as well as fishing mortality and final depletion (it can also
inform about recruitment deviations but not in the 5-parameter model),

2) it can more easily model the dynamics that include the full history of catches, and

3) it is more stable when implementing non-linear relationships between the CPUE and
exploitable biomass. Despite these advantages the observed fit to the CPUE data does
not appear as good as that in the biomass-based surplus production model.

On the other hand, the 5-parameter model is also being fitted to the size-composition data so
the model fit ends as a compromise between fitting the CPUE data and the size-composition
data.

111

In its turn, the full 35-parameter model has an important advantage over the size-structured
surplus-production model in that it can directly estimate the recruitment residuals required to
adjust the model fits to both the CPUE (Figure 6.9) and the size-composition data
(Figure 6.10).

Ignoring the recruitment deviates, the initial five parameter estimates also differ between the
5-parameter and the 35-parameter models:

Table 6.2: Comparison of the five main parameters when fitting the size-based model.

 5-param 35-param

LnR0 3081586 1327381

MaxDL 23.685 28.052

L95 169.088 178.423

qest 0.2900 0.6483

seldelta 0.006 4.093

Much of the variation in CPUE is accounted for by the implementation of recruitment
deviates in the 35-parameter model. Hence the differences between parameter values appear
relatively large as they reflect differences in how productivity is expressed (more due to
growth and less due to the average unfished recruitment in the 35-parameter model). Such
changes were required to account for the changed dynamics when recruitment deviates were
included. In fact, given these are numerical solutions, it is possible, if the initial parameter
values are varied, to obtain essentially identical final model fits where the total likelihood
differs at the second or third decimal place (of the order of a 10,000th of a percent
difference). It is the case that, given the highly variable size-composition data and the highly
variable catch data from year to year, a good deal of uncertainty can be expressed in the
model outputs.

There are also some strong assumptions included in the assessment that are associated with
the constant values given to some important parameters. These strong assumptions include
that the natural mortality = 0.15, that the steepness of the Beverton-Holt stock recruitment
relationship was 0.7, and that the lambda parameter, describing the non-linearity between
CPUE and exploitable biomass, was 0.75. These values were fixed because for abalone they
remain unknown or, at best, estimated for very small samples from few populations. Varying
these parameters does not affect the model fit very much but does alter the implied unfished
CPUE. In summary, the mathematical optimum model fit is different from the optimum
biologically plausible model fit (initial catch rates staying within plausible values). The three
assumed values appear to provide for the best compromise between optimizing both the
statistical fit and the most biologically plausible set of implied population dynamics.

It has been demonstrated that it is possible, for a statistical block in Tasmania, to use the size-
structured integrated assessment model to estimate the block’s productivity, the selectivity
characteristics, the growth characteristics, and a series of recruitment deviates used to help
describe the history of dynamics for which data are available. The uncertainty over what
values to attribute to natural morality (𝑀), recruitment steepness (ℎ), and the non-linearity
parameter (𝜆) remains a problem. Nevertheless, the use of the size-based integrated

112

assessment to characterize the dynamics within each SAU is a great improvement over the
simpler surplus production models.

6.5 Final Adjustments once in aMSE

After transferring the parameters from the sizemod estimates into each SAU within the aMSE
operating model further adjustments are required to the AvRec and recruitment deviates to
optimize the fits between the predicted CPUE at the SAU level and the observed standardized
CPUE as well as optimizing the fits between the predicted size-composition of catch and
those observed. This is done within aMSE using the two functions adjustavrec() and
optimizerecdevs() (see their individual help pages within aMSE for their arguments and the
syntax for how to use them.

The differences between the predicted MSY and AvRec for sizemod and aMSE is such that
for each SAU in the Tasmanian western zone the MSY in aMSE is about 9.5% less than the
sizemod estimate for each SAU, and the AvRec is about 3.8% larger in aMSE, although that
relationship is much more variable between SAU. These differences between the sizemod
and the aMSE values are a result of the dynamics in aMSE being split between each SAU’s
populations rather than a single dynamic-pool within each SAU and the scale of the
differences alters with the number of populations used within an SAU.

113

7. MSE Operating Model Structure

7.1 Model Dynamics

The operating model generates the population dynamics for a simulated abalone zone by
following the numbers-at-size through time of each of the component populations within each
of the sau. It does this by including how each is affected by natural mortality, somatic
growth, fishing mortality, and recruitment. The model developed in Haddon et al. (2013) and
Haddon and Helidoniotis (2013), and further developed in Haddon & Mundy (2016), used
separate vectors of numbers-at-size to describe the cryptic 𝑁௧

 and emergent 𝑁௧ா components
of each population. While this can be considered as a more realistic representation of nature
further testing demonstrated it was relatively inefficient. Here the model is somewhat
simplified through the cryptic and emergent components of the population being contained in
the single vector 𝑁௧, where 𝑁௧ is assumed to be the numbers-at-size (shell length in mm) at
the start of each year 𝑡. This simplifies the equations and helps speed the calculations
although with this approach the effect of emergence needs to be included explicitly in some
of the equations describing the dynamics (see the Selectivity section below).

Being based upon difference equations, the model structure adopted to describe the assumed
annual dynamics, begins at the start of each year and involves a number of steps: 1) half of
the survivorship from natural mortality being applied first, 20 this is followed by individual
growth, 3) then survivorship from fishing mortality (if fishing occurs), 4) followed by the
remaining survivorship from natural mortality, 5) finally, each population 𝑝, will give rise to
𝑅 recruits in year 𝑡, and if any larval dispersal occurs (described by the movement matrix

Phi, 𝚽), would lead to the re-distribution of a small proportion of those recruits among the
populations (Miller et al, 2009), and they are then added to the first size class of each
population vector, 𝑝, at the end of year 𝑡, 𝐍𝐩,𝐭, which is equivalent to be ing the start of hte

following year. If natural mortality is implemented as half natural mortality, that is 𝑆 ൌ
𝑒ିெ/ଶ, twice a year, with other dynamics between the natural mortality events then the
dynamics for the numbers-at-size can be represented in matrix notation (which is read right to
left) as:

𝐍𝐩𝐭ା𝟏 ൌ 𝚽𝐑𝐩 𝑆𝐀𝐩𝐆𝐩𝑆𝐍𝐩𝐭  ሺ7.1ሻ

where 𝑆 is the survivorship of population 𝑝 following half of the instantaneous natural

mortality in each population, 𝑀 (some small variation between populations is assumed), 𝐀𝐩
is the survivorship following the imposition of any fishing mortality occurring in population
𝑝 (which is implemented as vector multiplication with the vector result of 𝐆𝐩𝑆𝐍,௧), 𝐆𝐩 is

the growth transition matrix for population 𝑝, and 𝚽𝐑𝐩 is the vector of recruits, 𝐑𝐩, from

each population multiplied by the movement matrix 𝚽 among populations, and then added
into each size-class within 𝐍𝐩,𝐭ା𝟏 (the same as if it had been added at the end of the year,

𝐍𝐩,𝐭; because the end of each year is the same as the start of the next.

The survivorship following the fishing mortality rate over a year is defined as the
complement of an annual harvest rate A:

114

𝐴, ൌ ൫1 െ 𝑠,,௧𝐻,௧൯  ሺ7.2ሻ

where 𝐴, is the survivorship of length class 𝐿 for population 𝑝, 𝑠,,௧ is the selectivity of

length class 𝐿 in year 𝑡, and 𝐻,௧ is the fully selected harvest rate in year 𝑡 for population 𝑝
(the harvest rate being the proportion of exploitable biomass taken as catch). We explicitly
use exploitable biomass because the standard use of a legal minimum length (LML) in
abalone fisheries can lead to the exploitable biomass being very different from the mature
biomass.

an alternative view of the survivorship would be:

𝐀𝐩,𝐭 ൌ 𝑒ି𝐬𝐩,𝐭ி,  ሺ7.3ሻ

where 𝐬𝐩,𝐭 is the vector of selectivity-at-length (or size). Strictly, selectivity is assumed to be
equal for all populations within a zone (although as selectivity is combined with emergence,
which varies by population, the 𝑝 subscript is also required; see below), and 𝐹,௧ is the fully

selected, instantaneous fishing mortality rate for population 𝑝 in year 𝑡. This simplification
means that now the transition from cryptic and emergent no longer needs to be included in
the annual dynamics. However, it does require that selectivity is now a combination of
selectivity-by-diver and Emergence, which is only influential on the final selectivity if the
logistic used to describe emergence overlaps the legal minimum length (which is quite
possible in some areas of the western zone where the size at maturity can be relatively large
and in the early years of the fishery in Tasmania and the LML was only 127mm).

7.1.1 Model Initiation

Model initiation will always begin with each population being assumed to be at equilibrium
in the absence of fishing. At equilibrium, 𝐍∗, the absence of fishing mortality implies that
survivorship from the annual harvest rate equals one, 𝐀 ൌ 𝟏.𝟎, which can therefore be
omitted from the initiation):

𝐍𝐩∗ ൌ 𝚽𝐑𝐩 𝐒𝐩𝐡𝐆𝐒𝐩𝐡𝐍𝐩∗

If it is assumed that there is no larval movement, 𝚽 ൌ 𝐈, the Unit matrix, then that matrix
can also be ignored (for the time-being) in the dynamics, which can be re-arranged to obtain
an analytic expression for the equilibrium numbers-at-length 𝐍𝐩∗ (Sullivan et al, 1990):

𝐍∗ െ 𝑆𝐆𝐩𝑆𝐍𝐩∗ ൌ 𝐍∗൫𝐈 െ 𝑆𝐆𝑆൯ ൌ 𝐑𝐩

which, finally, implies (Sullivan et al, 1990):

𝐍𝐩∗ ൌ ൫𝐈 െ 𝐒𝐩𝐡𝐆𝐒𝐩𝐡൯
ିଵ
𝐑𝐩  ሺ7.4ሻ

If, however, there is even a minor degree of larval dispersal, and for blacklip abalone in
Tasmania a value of 0.5 percent (0.005) between populations is plausible, then the analytical
solution is no longer valid. In practice, within aMSE, the R-package from this project (R
Core Team, 2024; Haddon, 2024), the analytic solution is used to obtain the starting point for
an iterative application of the unfished dynamics until an equilibrium is obtained (see the help
for the function testequil).

115

7.1.2 Initial Depletion

By definition the model is initiated at an unfished equilibrium. However, having the complete
fishery history is not a luxury afforded to every fishery so there will be instances where prior
to conditioning the mdoel prior to applying the known historical catches, all or at least some
SAU may already be depleted to different degrees. The level of such depletion may be
suggested by the application of the sizemod size-based integrated assessment program to
each SAU (see chapter on Conditioning the MSE with the sizemod Package). Alternatively,
alternative levels may be applied in a hypothetical manner to determine their influence.

If an initial depletion is required this is input in the control file under the ZONE section in the
initdepl vector, with a value for each SAU (even if it equals 1.0, meaning no initial
depletion). This preliminary depletion is conducted within the depleteSAU() aMSE function.
If the initdepl value for an SAU is < 1.0, then this uses a simple trial and error search for the
harvest rate that depletes each SAU to a level closest to the value in initdepl and uses that
value to deplete the populations within the SAU so the final depletion is as close as can be to
the required value. Only then does the conditioning (fitting the operating model to the
available observations) occur. The dynamics for applying any initial depletion level is set to
use the selectivity that is reported for the first year of observational data.

7.2 Biology and Stock Related Statistics

7.2.1 Emergence

A logistic curve (Haddon, 2011, 2021) can be used to describe the transition from the cryptic
to the emergent component of the population, but this could only become influential on the
dynamics if natural mortality differs between the two components or if the emergence logistic
overlaps with the selectivity curve, and or the Legal Minimum Length (LML).

𝐸, ൌ
1

1 𝑒𝑥𝑝 ൬െ𝑙𝑜𝑔ሺ19ሻ ቀ𝐿 െ 𝐿ாହቁ / ቀ𝐿ாଽହ െ 𝐿ாହቁ൰

𝐸, ൌ
1

1 𝑒𝑥𝑝 ቀെ𝑙𝑜𝑔ሺ19ሻ ቀ𝐿 െ 𝐿ாହቁ /𝛿ቁ

  ሺ7.5ሻ

where 𝐸, is the proportion of size-class 𝐿 that are emergent in population 𝑝, and 𝐿ாହ

and 𝐿ாଽହ are the usual logistic parameters defining the lengths at which 50% and 95% are

emergent in population 𝑝. The term 𝛿 is the constant ቀ𝐿ாଽହ െ 𝐿ாହቁ. Emergence from

crypsis only becomes an issue for the dynamics of the model if they are considered to have
different natural mortality rates within crypsis and/or when the emergence curve overlaps
with the selectivity curve (which it can do when the LML is low, e.g. 127mm early on in
Tasmania, especially on the west coast). Where the selectivity and emergence curves overlap
then the proportion remaining in crypsis would act as a refuge, effectively reducing the
fishing mortality on those size classes.

7.2.2 Selectivity

Selectivity-by-diver is assumed to be equal across populations within a zone, but a 𝑝
subscript could be added if different LML were expressed in different parts of a zone (this

116

might be the case if different LML were imposed in different parts of the same zone, which
can occur in Tasmania!). In the operating model Selectivity, 𝑠,௧ for length 𝐿 in year 𝑡 needs
to be defined by year to permit changes in the LML to be reflected in the selectivity by
divers. This implies that rather than a single vector of values, a matrix of selectivity values
will be required, one column per year. Each year’s selectivity is defined using a lower-case 𝑠
to distinguish it from Survivorship:

𝑠,௧ ൌ
1

1 𝑒𝑥𝑝ሾെ𝑙𝑜𝑔ሺ19ሻሺ𝐿 െ 𝐿௦50ሻ/𝛿௦ሿ
  ሺ7.6ሻ

where 𝛿௦ ൌ 𝐿௦95 െ 𝐿௦50.

Strictly, in case the emergence curve overlaps the selectivity curve, to define selectivity we
should multiply the selectivity-at-length by the emergence-at-length (element x element, or
Hadamard, multiplication). That way, if there is overlap it will alter the selectivity
appropriately, and if there is no overlap then selectivity will not be affected. Importantly,
because emergence varies by population, this means that the selectivity expressed would not
necessarily be the same across all populations.

𝑠,,௧ ൌ 𝑠,௧ ൈ 𝐸,

𝐬𝐩,𝐭 ൌ 𝐬𝐭 ⊗ 𝐄𝐩
  ሺ7.7ሻ

7.2.3 Growth

The growth from size-class 𝑗 to size-class 𝑖 is described by the elements of a growth
transition matrix defined by:

𝐺,, ൌ න
1

√2𝜋𝜎,
exp൭െ

𝐿 െ 𝐿‾

2൫𝜎,൯
ଶ൩൱

ା
ௐ
ଶ

ିஶ

𝑑𝐿 𝐿 ൌ 𝐿ெ

𝐺,, ൌ න
1

√2𝜋𝜎,
exp൭െ

𝐿 െ 𝐿‾

2൫𝜎,൯
ଶ൩൱

ା
ௐ
ଶ

ି
ௐ
ଶ

𝑑𝐿 𝐿ெ ൏ 𝐿 𝐿ெ௫

  ሺ7.8ሻ

where 𝐺,, is the probability of growing from size class 𝑗 into size class 𝑖 in population 𝑝,

𝐿𝑊 is the size-class width, 𝜎, is the standard deviation of the normal curve describing the

growth increments of animals starting in size class 𝑗 in population 𝑝, 𝐿 is the length of size

class 𝑖, and 𝐿‾ is the mean growth increment of animals starting from the mean of size-class

𝑗. 𝐿ெ and 𝐿ெ௫ are the minimum and maximum size-classes, with the maximum being
treated as a plus group. To ensure that all columns sum to 1.0 (to prevent growth implying
losses or gains of its own), and to make 𝐿ெ௫ a plus group, the final row of the matrix is
modified for each column 𝑗 as:

117

𝐺,ಾೌೣ,ೕ
ൌ 𝐺,ಾೌೣ,ೕ

 ቌ1 െ 𝐺,,

ಾೌೣ

ୀభ

ቍ  ሺ7.9ሻ

The expected mean growth increment from size-class 𝑗 (so it grows into size class 𝑖) is
defined using an inverse logistic growth curve that has been found to describe blacklip
abalone growth well (Haddon et al. 2008; Helidoniotis et al., 2011):

𝐿‾,, ൌ 𝐿,
𝑀𝑎𝑥𝛥𝐿

1 𝑒𝑥𝑝ൣ𝑙𝑜𝑔ሺ19ሻ൫𝐿, െ 𝐿,50൯/𝛿,൧
 𝜀,ೕ

𝑀𝑎𝑥𝛥𝐿 is the maximum growth increment for the population 𝑝, 𝐿,50 and 𝐿,95 are
the usual logistic parameters defining the initial lengths at which 50% and 5% of the
maximum growth increment are expressed (𝛿, is simply the 95% minus the 50%

parameters). Note that the 𝑙𝑜𝑔ሺ19ሻ is positive, which inverts the logistic curve (compare
with the equation for emergence; Equation 7.5). The 𝜀,ೕ

 is the variation around the mean

expected growth increment. It is assumed to be normally distributed with a standard deviation
that varies with the growth increment (Haddon et al. 2008):

𝜎,ೕ
ൌ

𝑀𝑎𝑥𝜎
1 𝑒𝑥𝑝ൣ𝑙𝑜𝑔ሺ19ሻ൫𝐿, െ 𝐿,95൯/𝛿,,ఙ൧

  ሺ7.10ሻ

The ൫𝐿ெ௫ െ 𝐿,95൯ remains a constant and can be parameterized as such (𝛿,,ఙ).
Alternative descriptions of this variation, such as the use of a power law (Haddon, 2021),
may be explored for their impact. Additional growth curve description options could be
included in the R package aMSE (Haddon, 2025) if requested by users.

An important influence on the growth increment estimates is the negative bias that appears to
be introduced by the tagging methods used in their estimation (See Haddon et al, 2013, page
191, Figure 70). This means that when conditioning the abalone operating model, it will be
necessary to compare the predicted unfished numbers-at-size with those obtained from the
fisheries catch-at-size. In that earlier work, after using the best estimates of growth increment
from tagging, the predicted size-distribution of the unfished population had a smaller average
size than the observed frequencies in the catches from a non-pristine fishery. Clearly
modifications to the growth parameters were required and options are discussed in the growth
section of the Conditioning_the_MSE chapter.

7.2.4 Weight-at-Length

The weight-at-length, 𝑊, relationship involves two constants:

𝑊, ൌ 𝑎𝐿
  ሺ7.11ሻ

During the conditioning of the model it is possible that an observed power relationship that
exists between the two parameters can be used instead of estimating both (see Haddon et al,
2013, page 209, Figure 75). Using this has the advantage that any correlation between the two
parameters is maintained even when random pairs are used.

118

7.2.5 Maturity-at-Length

Maturity at size, 𝑚,, uses an alternative logistic curve, again with two parameters, 𝛼 and

𝛽, only this time 𝐿ହ ൌ െ𝛼/𝛽 and the inter-quartile distance is 2𝑙𝑜𝑔3𝛽 ൌ
2.197225𝛽.

𝑚, ൌ
𝑒𝑥𝑝൫𝛼 𝛽𝐿൯

1 𝑒𝑥𝑝൫𝛼 𝛽𝐿൯
ൌ

1

1 ቀ𝑒𝑥𝑝൫𝛼 𝛽𝐿൯ቁ
ିଵ  ሺ7.12ሻ

such curves are best fitted to observed data using a Generalized Linear Model that uses
binomial residual errors (see the associated R package biology).

7.2.6 Spawning and Exploitable Biomass

Mature or spawning biomass needs to include numbers-at-size by maturity-at-size and
weight-at-size. The operating model (OM) operates at the population scale but the ‘predicted’
data from the OM needs to be at the SAU level. Hence, the outputs from each population
need to be combined in a valid manner (see later under Sampling). Whatever the case for
sampling, we will still need population-based estimates of such things as exploitable biomass,
numbers-at-size, and so on, so methods for combining the appropriate populations into a
single SAU are required. Some, such as numbers-at-size, will need simple summation while
others, such as cpue, might require catch-weighted values. A population-based estimate of
spawning biomass at time 𝑡, 𝐵,௧

ௌ , can be obtained through:

𝐵,௧
ௌ ൌ ൫𝑚,𝑊,𝑁,,௧൯

ಾೌೣ

ୀಾ

  ሺ7.13ሻ

Spawning biomass is, like exploitable biomass, calculated in the same units as the 𝑊,
equation (dependent upon what parameter values are used). If that is in grams then it requires
division by 1e6 to estimate tonnes, if in kg then division by 1000 is required. Exploitable
biomass, when used to calculate CPUE, is estimated after half of natural mortality and growth
have occurred and before any fishing mortality occurs in any single year. Remember that the
selectivity for each population, 𝑠,,௧ includes any effects of Emergence:

𝐵,௧
ா ൌ 𝑠,,௧𝑊,𝐺,,𝑒

ିெ/ଶ𝑁,,௧

ಾೌೣ

ୀಾ

  ሺ7.14ሻ

where the exploitable numbers-at-size 𝐿 in year 𝑡, 𝑁,,௧
ா , is obtained from:

𝑁,,௧
ா ൌ 𝐺,,𝑒

ିெ/ଶ𝑠,,௧𝑁,,௧  ሺ7.15ሻ

where 𝑁,,௧ is the numbers-at-size 𝐿 at the start of year 𝑡 for population 𝑝.

For internal consistency, however, exploitable biomass is also reported as start-of-year values
as well as mid-year values, and so is simply the sum across size-classes of the final numbers-
at-size at the end of the previous year by the selectivity times the weight-at-length:

119

𝐵,௧ାଵ
ா ൌ 𝑠,,௧𝑊,𝑁,,௧

ಾೌೣ

ୀಾ

  ሺ7.16ሻ

where 𝐵,௧ାଵ
ா is the start-of year exploitable biomass (equals the end of year exploitable

biomass).

7.2.7 Catchability and CPUE

At least in the Tasmanian blacklip abalone fishery, the relationship between catch-rates and
catches is usually observed to be linear, hence the relation between catches and effort is also
linear. Because of this catch-rates are assumed to have at least some influence over the
distribution of catches among areas. Observed catch-rates (cpue) would naturally be expected
to be variable through time and across areas and so are modelled as:

𝐼௧, ൌ 𝑞൫𝐵,௧
ா ൯

ఒ
𝑒ே൫,ఙ൯

where 𝐼௧, is the cpue in year 𝑡 for area 𝑝, 𝑞 is the catchability coefficient within population

𝑝. 𝐵,௧
ா is the mid-year exploitable biomass in year 𝑡 and area 𝑝, with a non-linearity

coefficient of 𝜆, and 𝑒ே൫,ఙ൯ is a Log-Normal random deviate, with 𝜎 being the standard

deviation of the catchability coefficient 𝑞. If 𝜆 ൌ 1.0 then the relationship between cpue

and exploitable biomass is linear, values other than 𝜆 ൌ 1.0 lead to non-linear relationships,
which can make rather a large difference to the 𝑞 value. Given how important the use of
cpue is in all Australian abalone harvest strategies, this is one assumption whose influence is
in dire need of testing. We are using 𝑝 as a sub-script for population (or area of persistent
production), because in the conditioning each population within each Spatial Assessment
Unit corresponds to a particular area within that SAU. Effectively, area and population are
the same thing in the model.

7.2.8 Annual Model Dynamics

Once each population is initiated its dynamics can be projected forwards a year at a time
depending on how much catch is expected to be taken or how much effort is expected to be
focussed into each population. The population initiation sets up the equilibrium numbers for
the properties defined for each population. Then, given a specific harvest rate for each
population they can be projected forward in yearly steps. This projection is based around how
the numbers-at-size change through fishing, growth, natural mortality, and recruitment. As
before, the fishing mortality rate over a year is defined as the complement of an annual
harvest rate and is distributed down the diagonal of an otherwise zero matrix A:

𝐴, ൌ ൫1 െ 𝑠,,௧𝐻,௧൯

where 𝐴, is the survivorship of length class 𝐿 for population 𝑝, 𝑠,,௧ is the selectivity of

length class 𝐿 in year 𝑡, and 𝐻,௧ is the fully selected harvest rate in year 𝑡 for population 𝑝
(the harvest rate being the proportion of exploitable biomass taken as catch). We can define
the survivorship from applying half of natural mortality as follows:

𝑆 ൌ 𝑒ିெ/ଶ

120

𝑆 does not need to be a vector as multiplying a matrix or vector by a constant is simpler and
quicker. We apply this survivorship twice in a year with the other dynamics occurring
between:

𝐍𝐩𝐭ା𝟏 ൌ 𝑆ൣ𝐆𝐩𝐀𝐩𝐭 𝑆𝐍𝐩𝐭 ൧ 𝚽𝐑𝐩

7.2.9 Recruitment Processes

Recruitment is described using a vector with all new recruits allocated to the first size class
and all other size classes being set to 0. This may need modification if small size classes are
used (perhaps 1mm) and post-larval forms are variable in size. A Beverton-Holt stock
recruitment relationship was assumed, as re-parameterized by Francis (1992), with a and b
parameters that were restructured in terms of steepness, ℎ, unfished mature or spawning

biomass, 𝐵
ௌ, and the average unfished recruitment level, 𝑅:

𝑎 ൌ
4ℎ𝑅,

5ℎ െ 1
 and 𝑏 ൌ

𝐵,൫1 െ ℎ൯
5ℎ െ 1

Using this re-parameterization the Beverton-Holt relationship becomes:

𝑅,௧ ൌ
4ℎ𝑅,𝐵,௧

ௌ

൫1 െ ℎ൯𝐵, ൫5ℎ െ 1൯𝐵,௧
ௌ 𝑒ఌ,ିఙ,ೃ

మ /ଶ

where 𝜀,௧ is defined as:

𝜀,௧ ൌ 𝑁൫0,𝜎,ோ
ଶ ൯

The expected residual error distribution around the recruitment is log-normal; 𝜎,ோ is the

standard deviation of the natural logarithm of the recruitment residuals, and െ𝜎,ோ
ଶ /2 is a

bias correction term that ensures that the time series of estimated recruitment values relates to
the mean rather than the median recruitment level (Hastings & Peacock 1975). This requires,
for each population, that ℎ, 𝑅,, 𝐵,, and 𝜎,ோ be defined for each population, and for

each year that 𝐵,௧
ௌ be estimated. Should deterministic recruitment be required (as when

calculating the unfished, equilibrium zone structure), then set 𝜎,ோ to a very small number
(when 1e-08 is squared this is the smallest number possible on most computers with 15
significant digits).

𝐴, is the virgin biomass per recruit and is defined as the mature stock biomass that would

develop given a constant recruitment level of 1. Thus, at a biomass of 𝐴,, distributed across

a stable size distribution, the resulting recruitment level would be 𝑅, ൌ 1. 𝐴, acts as a

scaling factor in the recruitment equations by providing the link between 𝑅, and 𝐵,
ௌ .

𝐴, can thus be estimated by setting the annual recruitment level to 1, obtaining the
equilibrium size distribution using unfished dynamics. At the virgin biomass per recruit,
𝐴,, the average unfished recruitment level, 𝑅,, is related directly to the unfished mature,

or spawning, biomass, 𝐵,
ௌ :

121

𝐵,
ௌ ൌ 𝑅,𝐴,

In Tasmania, during the conditioning, the average unfished recruitment level for each SAU
(AvRec = 𝑅) is adjusted so that the fit of the predicted CPUE is close to the observed CPUE
for each SAU. The populations within each SAU are defined using the Tasmanian GPS
logger data to identify areas of persistent productivity (see the Conditioning section). Then
the 𝑅 for each SAU is distributed among the populations in proportion to the relative yield
reported for each of the GPS defined areas of persistent productivity (APPs, which we refer
to as populations). Without a time-series of such detailed GPS data then the relative size of
each population could be defined by randomly selecting (from a log-normal distribution) an
initial unfished average recruitment, 𝑅,, which, given the equilibrium size distribution,

provides an estimate of each population’s unfished mature biomass 𝐵,
ௌ .

7.2.10 Larval Dispersal

The annual dynamics include recruitment but a small proportion of each population’s larval
production can disperse away from that population. To be general we use a matrix of the
potential movement from population to population but, given the linear structure to most
reefs around coastlines very few cells in the matrix will be filled. The diagonal of the
movement matrix defines the proportion of larvae that are expected to settle within the
population that generates them. The immediate sub-diagonal and super-diagonal relate to the
movement between adjacent populations. This simplification is used in the operating model
because while a small amount of movement is known to occur (Miller et al, 2009), little or
nothing else is known about that dispersal.

Alternative matrix structures could be generated to account for more complex spatial
arrangements of populations but such things would need to acknowledge they were based on
speculation rather then even approximate estimates.

𝛷 ൌ

𝑝ଵ,ଵ 𝑝ଶ,ଵ 0 0 0 0 0
𝑝ଵ,ଶ 𝑝ଶ,ଶ 𝑝ଷ,ଶ 0 0 0 0

0 𝑝ଶ,ଷ 𝑝ଷ,ଷ 𝑝ସ,ଷ 0 0 0
0 0 𝑝ଷ,ସ 𝑝ସ,ସ 𝑝ହ,ସ 0 0
0 0 0 𝑝ସ,ହ 𝑝ହ,ହ 𝑝,ହ 0
0 0 0 0 𝑝ହ, . .
0 0 0 0 0 . 𝑝,

7.2.11 Fleet Dynamics

The application of any harvest control rule in this complex spatial model will entail the
translation of SAU level aspirational catches (which should sum to the zone’s TAC), into
catches applied to each individual population within each SAU. Of course, the aspirational
catches per SAU derived from the harvest control rules (HCR) within each harvest strategy
will not be taken exactly, The overall TAC will eventually constrain total catches, but some
SAU will experience larger catches than expected, and others will experience smaller catches.
As a result, the application of the TAC as catches to particular populations requires two steps.

122

The first step is to include variation into the aspirational catches for each SAU from the HCR
and then scale them until their sum equals the original TAC. The second step requires that
each SAU’s actual catch is distributed across their component populations in some manner
that reflects plausible fleet dynamics.

The assumption is made in the Tasmanian HS that the sum of the catches across the SAU
equates to the TAC. If ever the TAC were not completely caught this assumption would
obviously have to change. Each year the aspirational catches for either the zone TAC or for
each SAU will be determined by application of the harvest control rule for whatever harvest
strategy is being used. In Tasmania, the harvest control rule uses a multi-criterion decision
analysis (mcda) based around different aspects of cpue. In the operating model this is
implemented initially without error.

𝐶௨,௧, ൌ 𝐶௨,௧ିଵ ൈ 𝑚𝑢𝑙𝑡ℎ𝑐𝑟

where 𝐶௨,௧ିଵ is the aspirational catch from SAU 𝑢 in year 𝑡 െ 1, 𝐶௨,௧, is the aspirational

catch from SAU 𝑢 in year 𝑡, and 𝑚𝑢𝑙𝑡ℎ𝑐𝑟 is the previous year’s acatch multiplier derived
from whatever HCR is used. It is important to understand that it is the aspirational catches
that are modified each year, not the actual catches.

The new 𝑇𝐴𝐶௧ will be:

𝑇𝐴𝐶௧ ൌ 𝐶௨,௧,

ௌ

௨ୀଵ

The first step on the way to setting the potential actual SAU catch is to include Log-Normal
variation to the SAU exploitable biomass on the assumption that the divers gain an
appreciation of how much is present in each SAU, but they make mistakes and availability
varies across years so there is a misallocation of effort:

𝐵௨,௧
ா,∗ ൌ 𝐵௨,௧

ா 𝑒ఌೠ,ିఙಳ
మ/ଶ

where:

𝜀௨,௧ ൌ 𝑁ሺ0,𝜎
ଶሻ

𝜎 is the standard deviation of the variation that occurs between the real exploitable biomass
and the perceived distribution of exploitable biomass across SAU’s, which also includes
other sources of uncertainty.

This variation is introduced into the potential SAU catches using:

𝐶௨,௧
∗ ൌ 𝑇𝐴𝐶௧ ൈ

𝐵௨,௧
ா,∗

∑𝐵௨,௧
ா

where 𝐶௨∗ is the actual SAU catch scaled to the new TAC.

A useful diagnostic for use during conditioning, and during model runs, would be to examine
the predicted variation between the actual catches and aspirational catches determined by the

123

HCR, if one has such data from a real fishery. Otherwise, it should be characterized from the
outputs, which will allow its variation to be examined for plausibility.

7.2.12 Calculation of MSY

The maximum sustainable yield for each population is estimated for each one using a
numerical approach that characterizes the expected production curve but starting with the
equilibrium unfished population (or app) and sequentially applying a sequence of harvest
rates for two or three times the number of historical years of data until it approximates an
equilibrium yield for each applied harvest rate. The maximum yield achieved across the range
of harvest rates is the MSY. The precision of such numerical methods is constrained by the
steps selected between the individual harvest rates. The smaller the increments on harvest rate
the finer the resolution. The dynamics of this numerical process, by default, uses the
selectivity that will be applied at the end of the projection years.

If, for some, currently un-imagined, reason the selectivity from an alternative year is wanted
then the index for that year (between 1 and hyrs + pyrs) can be put into the selectyr argument
for the do_MSE() function.

7.3 Model Output

7.4 Sampling from the Operating Model

The MSE operates by simulating the yearly dynamics and then, using data from the operating
model (OM) it applies a harvest control rule, at a period determined by the respective harvest
strategy being tested, generates the required management advice and conducts subsequent
years using that management advice. This is repeated for as many years as are included in the
simulation.

124

Figure 7.1: The feedback loop of an MSE simulation framework as used with abalone. The data can include anything from
the operating model although always at the scale of SAU, including catches, cpue (and/or survey indices), length-
composition of catches, each with error, as well as error-free statistics from the simulated population.

125

8. Conditioning by Population

8.1 Summary

The AIRF project 2023_63 has enabled the aMSE code base developed during the FRDC
project 2019-118 to be expanded to allow for population-based conditioning of individual
populations within different spatial assessment units (SAU). The option of population
conditioning is now available although if is not used it has no effect on the simulation
outputs. Population based conditioning is required when attempting to answer tactical issues
such as the effect of making a change to the legal minimum length (LML) in areas where the
heterogeneity of productivity is very great (such variation is common in blacklip abalone
stocks). In addition to adding these new options, an array of new outputs relating to
population-based dynamics and properties have also been implemented, which, again, are
designed to facilitate answering SAU specific questions relating to optimizing management
decisions other than catch levels. All of these changes now operate seamlessly within the
codebase.

8.2 Introduction

In previous sections, methods for conditioning the operating model within the MSE have
been described. Assuming it has been possible to use the sizemod package to fit to data from
each SAU, ideally, the dynamics of each SAU, as they are predicted by the aMSE software,
should be very similar to that expressed by the individual SAU in the sizemod software.
Differences can be expected because in the aMSE package each SAU, instead of being
treated as a single dynamic pool population (as it is in sizemod), is represented as a set of
mostly separate populations.

Prior to the changes described in this chapter the biological properties of each population
within each SAU are based upon the properties expressed at the SAU scale, albeit with
random variation included on almost all biological properties. The degree of variation added
in the examples is set to a level in each case to mimic the spatial heterogeneity in productivity
typically expressed by the blacklip abalone around Tasmania). When conditioning by SAU
the current property that is an exception to this strategy is the average unfished recruitment
level (R0 or AvRec), estimated as a parameter for each SAU by sizemod. Now, in aMSE, the
SAU level AvRec is sub-divided across each SAU’s populations on a fixed proportional basis,
which will be unique to each SAU (and has been derived from the relative yield from the
population areas as defined using the GPS logger data). The method of implementation can
be seen in the Chapter 5 under the propREC section. As a result of this variation, there can be
many differences between and within SAU and how they are represented in the MSE.

The development of both the aMSE and sizemod R packages was partly driven by needing to
solve the various problems associated with providing a generalized framework for conducting
MSE analyses on spatially structured benthic fisheries on species that required size-structured
dynamics (because they were hard to age). The sizemod R package was developed as a
means of conditioning the MSE operating model within aMSE such that its predicted
dynamics attempted to match both the observed CPUE as well as the observed size-
composition of the catch of abalone. The advent of sizemod led, in turn, to improvements to
aMSE because of the new options presented by the outputs of sizemod. It is still the case,
however, that some of the outputs from sizemod need to be modified slightly when they are
represented by multiple populations within each SAU.

126

In some parts of the fishery more information is available concerning some aspects of the
biology such as the size-at-maturity and growth. There are sometimes large differences in
yield between some areas of persistent production (app or population), which are not able to
be accounted for merely by including random variation and modifying the average unfished
recruitment (AvRec) for a particular app/population. In addition, it can sometimes be
desirable to set up scenarios where groups of apps within SAU have either low, middling, or
relatively high productivity. In such cases some way of manipulating the variables important
to productivity within individual apps (=populations) is required. The proportional strategy
used to allocate unfished recruitment across the collection of apps within each SAU is not
suitable for fixing values of size-at-maturity or growth in particular populations, so an
alternative approach was developed and implemented.

8.2.1 Variables Important for Productivity and Yield

A number of model parameters relating to biological properties important for productivity
exist. These include:

 average unfished recruitment, AvRec
 the growth parameters, here we use the maximum growth increment, DLMax, and the

length at 5 percent of the maximum increment, L95 (= L50 + L50inc)
 the size-at-maturity, here we use the L50mat parameter (= length at 50 percent

maturity) and the SaMa, or size-at-maturity ‘a’ parameter, the intercept of the
maturity ogive with length

 the instantaneous natural mortality rate, M
 the steepness of the stock recruitment relationship, h (from the Beverton-Holt stock

recruitment curve)

 the weight-at-length relationship, here we use the exponential b parameter of the 𝑊 ൌ
𝑎𝐿 that represents the weight at a given length 𝑊.

How these can be allocated individually to particular populations/apps is the subject of this
chapter.

8.2.2 The Difference between Productivity and Yield

The notions of productivity and yield sometimes appear confounded in the fisheries literature
but their differences are clear.

The yield from any area is simply the amount of catch that has been removed over whichever
time-frame is being considered. Whether the ‘yield’ should include any other fishing related
mortality is a complication best avoided by treating that separately. With abalone, non-fishing
related mortality should be minimal, especially as when divers accidentally remove sub-legal
sized animals from the rock, they are required to place the animals back on a rock surface and
ensure they adhere. Illegal, unreported, and unregulated catches (IUU catches), such as that
due to poaching or even recreational fishing, should be treated separately where there is
available information.

Productivity is a more complex concept than simple yield. It relates to the rate of production
of potential yield, which is one reason the two concepts can get confused. For example, the
somatic growth of individuals is a strong contributor to a population’s productivity. Thus, a
low productivity reef of the same area as a higher productivity reef will, on average, produce
a lower yield because the individuals in the more productive population are expected to grow

127

past the legal minimum length (LML) faster and to grow to a larger, heavier size. Two equal
sized reefs might produce the same yield in a given year, but the more productive reef will be
able to sustain such catches for longer. Generally, a lower productivity area would be
expected to have slower growth, a smaller maximum size, and possibly a lower size-at-
maturity. The possible yield is determined both by the biological productivity and the legal
minimum size, as well as the area of a reef. A key factor for abalone sustainability is setting
the legal minimum size appropriately.

The caveat above about ‘same size reef’ is important, because, in principle, it would not be
impossible to obtain a seemingly high yield from a relatively low productivity area if that
area was large. Even so, it would not be expected to be able to sustain large catches for as
long as an equivalent high productivity area. Similarly, if the available reef area of a highly
productive population was low then the potential yield from it will also be low. Despite this, a
difference between the two is that it is easier to deplete a higher productivity area if the legal
minimum size is set at a size that enables the fishery to deplete the spawning biomass. If the
LML is set at a size that allows good access to slower growing, less productive populations in
an SAU (spatial assessment unit), this will increase the risk of over-fishing for faster
growing, more productive areas, which, very sensibly, are generally preferred by divers.

As natural mortality is generally strongly related to somatic growth rates and maturity,
natural mortality is also expected to be strongly influential on productivity (Beverton, 1992;
Jensen, 1996). However, as is typical in most fisheries, estimates of natural mortality for any
species are generally poorly defined, and this is especially the case with species that are
difficult to age. Abalone around Tasmania appear able to live to at least 30 years of age
(based on growth rates and maximum sizes), which using simple life-history relationships
implies a natural mortality rate of about 0.15. This is generally used along with slight
variation among populations. When attempting to adjust the productivity of individual
populations (=apps) it is recommended that changes be made to growth, maturity, and
recruitment, rather than to natural mortality.

The average long term yield from an area is correlated with the area of reef fished
(determined using the combined areas of the KUD derived from the GPS logger data). So,
when attempting to set the productivity AvRec, or the proportion of recruitment allocated to a
population, should perhaps be the first variable to modify. The total AvRec influences the
SAU’s total population, so changing that will alter each population according to its allocated
share.

After having set up the SAU approximately to the level reflecting that observed in the fishery,
it is recommended that when proceeding to condition on individual populations then the
parameters on which to concentrate relate to somatic growth and maturity. Of course, if
required, any of the model’s parameters can be added to the list of those fixed by population.
For example, the steepness (defsteep) in the data file) can be influential because it also affects
the stock recruitment curve, although once the other parameters are fixed the effects of
steepness become relatively minor.

8.3 Methods

A description of conditioning each SAU might summarize earlier sections by describing how
a base case set of constants for natural mortality, steepness, and cpue hyperstability, lambda,
were chosen for implementation within aMSE. Once selected, the available fishery and
biological data for each SAU could be put through sizemod and the model fitted in a manner
that estimated some growth parameters, the unfished average recruitment, and the average

128

diver selectivity across sizes of abalone. In addition, sizemod estimates recruitment deviates
across those years where sufficient size-composition data exist to inform the model. Other
constants, such as those describing the weight-at-length are estimated outside of the model.

8.3.1 Relative Weighting of Data Sets

Within sizemod the relative weight attributed to the cpue index of relative abundance is
described by Francis (2011; the so-called Francis weighting). At the same time, an iterative
re-weighting routine is used to discover the optimum weighting to apply to the size-
composition data. Finally, relative bias ramps are applied to the recruitment deviates to
account for the varying amount of information available at the limits of the observed size-
composition data (Method & Taylor, 2011).

Routines have now been developed that collect together the final optimum parameters into a
matrix and these can now be automatically transferred to the control and data files used by
aMSE so that the latest estimates of the important productivity parameters are easily
transferred accurately from sizemod. To enhance comparability between the outputs of both
sizemod and aMSE it is important that the assumed constants for such things as the weight-
at-length, maturity-at-length, growth and all the rest are the same for each SAU in both
software systems.

After transferring the parameters from the sizemod estimates into each SAU within the
aMSE operating model further adjustments are required to the AvRec and recruitment
deviates to optimize the fits between the predicted CPUE at the SAU level and the observed
standardized CPUE as well as optimizing the fits between the predicted size-composition of
catch and those observed. This is done within aMSE using the two functions adjustavrec()
and optimizerecdevs() (see their individual help pages within aMSE for their arguments and
the syntax for how to use them.

The differences between the predicted MSY and AvRec for sizemod and aMSE is such that
for each SAU in the Tasmanian western zone the MSY in aMSE is about 9.5% less than the
sizemod estimate for each SAU, and the AvRec is about 3.8% larger in aMSE, although that
relationship is much more variable between SAU. These differences between the sizemod
and the aMSE values are a result of the dynamics in aMSE being split between each SAU’s
populations rather than a single dynamic-pool within each SAU SAU and the scale of the
differences alters with the number of populations used within an SAU.

8.3.2 Conditioning the Operating Model at a Population Level

Much of the data used to condition the operating model is contained within the
‘saudataXXX.csv’ file (see Chapter 5 for a detailed description of the contents of each input
file). Each SAU has a particular average value of the important variables to be set, such as
DLMax and L50mat. In addition, there is an associated variability sDLMax and sL50mat used
to define the variation used when randomly varying each parameter across the populations
within each SAU. For what follows it is important that the name of the variation parameter is
identical to the variable it relates to except for the prefix ‘s’. This is because the names are
used explicitly when identifying which parameters are to be set by population and which are
to remain randomly allocated across populations. Those that are to be set by population need
to have their associated variation set to a very small number (e.g. 1e-06 or smaller) so that
when variation is added it does not affect the set value.

129

8.3.3 An Hypothetical Example

An hypothetical sauX can be used to illustrate what changes are required to implement
population-based parameter setting. The example will be unrealistic as only four populations
will be implemented within a single SAU so that the example is simple to follow (a matrix of
four rows is easier to follow than one of 30 rows). In real simulations there would generally
be many more separate populations. For example, the western zone simulation used in FRDC
project 2019-118 had 56 populations across the eight SAU. When conditioning by population
the potential to increase the spatial detail is greater.

We are using the catch, cpue, and size-composition data from sau5 in Tasmania’s Northern
zone to form the basis of our hypothetical SAU. In reality, the number of identifiable
populations within sau5 is somewhere between 13 and 24, with a final number to be decided
through consultation with experienced industry members regarding on-the-ground fishing
behaviour.

The structure and contents of the control, data, and size-composition data files are described
in the chapter on The Input Files (Chapter 5). No changes are required to the control file. The
bysau flag, under the START section in the control file should remain set = 1:

 START,,,,
 runlabel, sauX , the scenario label,,
 datafile, saudatasauX_by_sau.csv , name of saudata file,,
 bysau,1, 1=TRUE and 0=FALSE,,
 …

Prior to AIRF project 2023_63 the bysau flag was inserted into the code base in readiness in
case an opportunity came to condition the population properties directly rather than as
random variation from SAU properties. Once starting the 2023_63 project, after some false
starts, it soon became clear that there was a more effective way of implementing population-
based conditioning that did not need the bysau flag. Rather than produce a large and difficult
to use matrix of all variables (minus the variation terms) by all populations it is much more
efficient to only modify those variables that influence productivity (or other aspects of the
fishery that are to be explored) and leave the rest as random variation from SAU averages.
The bysau flag is now deprecated and eventually it will be removed from the code. It is
retained in the meantime to avoid the potential for disruption of other users of the aMSE
software. If the flag is set to its default value of 1 (as in: bysau, 1,) then the flag will continue
to have no effect on any of the scenarios.

Instead of using the bysau flag a simpler solution for the user was to allow the software to
determine which parameters were to be fixed for each population when reading in the data
file. This is the source of the requirement that care is needed when typing the names of the
selected parameters. When no population conditioning is used, which was the only option
developed prior to AIRF project 2023_63, the propREC section only referred to the
proportion of each SAU’s AvRec (average unfished recruitment level) allocated to each
population. Obviously, the proportions across all populations sums to 1.0. In the data file this
is represented using the following lines at the bottom of the file (see Chapter 5; the symbols
at the start of each line in the text are not included in the data files):

 propREC,,
 sau, pop,AvRec,

130

 5, 1, 0.1,
 5, 2 ,0.4,
 5, 3, 0.1,
 5, 4, 0.4,

In the single-SAU-four-population example of sauX we will illustrate fixing the L50Mat, the
size at 50% maturity, SaMa, the intercept of the maturity ogive , DLMax, the maximum
growth increment, L50, the size at half the maximum growth increment, and L50inc, which is
used to produce the L95 growth parameter (𝐿ଽହ ൌ 𝐿ହ 𝐿ହ).

When implementing population-based conditioning, where selected variable/parameter values
are defined or fixed in each population, it is necessary to provide values for each of the
selected parameters for each population implemented in the operating model. The
implementation involves expanding the original propREC section at the bottom of the data
file. Perhaps the section should no longer be termed propREC, but again, to prevent
disruption to other users this name will be retained (for the time being; naming things when
writing software is harder than it might look).

The names used in the first line below the propREC label must have exactly the same spelling
and capitalization as is used in the table of SAU parameters that make up the top of the data
file (see Chapter 5). The first three columns remain identical to the default conditioning setup
(as above). We have added the five parameter names and the respective values that we wish
to allocate to each of the four populations.

In the north-west for example, we might use an analysis of the extensive data set available on
the size-at-maturity across sau 5 and 6 to define a more specific set of values for the different
populations identifiable using the GPS logger data. Similarly, in consultation with Industry
divers, the relative productivity expected from each smaller area within each SAU can be
used to select appropriate values for the growth parameters. Such conditioning at a finer
geographical scale than the SAU is very dependent upon the GPS logger data. But this finer
scale is required to make sense of the heterogeneity in productivity expressed by the various
areas of persistent productivity identified within the north-west.

Table 8.1: An example expansion of the propREC data fields at the bottom of the MSE data file required to set the values of
five extra parameters in each population.

sau pop AvRec L50Mat SaMa DLMax L50 L50inc

5 1 0.1 99.5 -15.969 21.8 112 31.5

5 2 0.4 98.9 -15.969 24.0 112 38.5

5 3 0.1 113.0 -25.853 26.6 115 34.9

5 4 0.4 115.0 -25.853 22.6 115 40.1

The data file, with most unchanged lines omitted, should now have the following form:

 Biological properties by population for hypothetical sauX
 SPATIAL,,
 nsau,1, number of spatial management units
 saupop,4, number of populations per SAU in sequence
 saunames,X, labels for each SAU

131

 PDFs,32,
 DLMax ,23.50603217, maximum growth increment
 sDLMax ,1.00E-06, variation of MaxDL NOTE tiny value
 L50 ,112, Length at 50% MaxDL
 sL50 ,1.00E-06, variation of L50 NOTE tiny value
 L50inc ,30.34957282, L95 - L50 = delta =L50inc
 sL50inc ,1.00E-06, variation of L50inc NOTE tiny value
 …
 AvRec,878733.028324352,
 sAvRec ,1.00E-07, NOTE tiny value
 …
 SaMa,-22.371, maturity logistic a par
 L50Mat,98.8992042, L50 for maturity b = -1/L50
 sL50Mat,1.00E-07, NOTE tiny value
 …
 propREC,,
 sau, pop,AvRec,L50Mat,SaMa,DLMax,L50,L50inc,
 5,1,0.1, 99.5,-15.969,21.8,112,31.5,
 5,2,0.4, 98.9,-15.969,24.0,112,38.5,
 5,3,0.1,113.0,-25.853,26.6,115,34.9,
 5,4,0.4,115.0,-25.853,22.6,115,40.1,

Note the single-sau-four-population spatial structure under SPATIAL. Each of the five
parameters fixed to population specific values has its related variation value denoted with the
same name prefixed with s, as, for example, sDLMax and sL50inc. The SaMa parameter does
not have additional variation as the weight-at-length relationship it affects is extremely
sensitive to this value and adding even small amounts of variation led to unpredictable
outcomes. In each case these sParName values have been set to very low value such as 1e-06
or 0.000001. When each population is generated within the aMSE software, including this
much variation leads to no noticeable change to the fixed values.

If the user forgets to set the variation variable to a very low value and yet sets up the rest of
the data file to fix specific parameters, then a warning message is generated. Similarly, if a
parameter is not set up to be fixed for each population but the variation term is still set very
low, a different warning message is generated.

8.3.4 Other Details

Earlier data files were somewhat odd in that the variation term for the DLMax was named
sMaxDL.

 PDFs,32,
 DLMax, 23.50603217, maximum growth increment
 sMaxDL, 1.00E-06, MaxDL name decremented, replaced by sDLMax
 L50, 112, Length at 50% MaxDL

132

 …

This is merely an historical hang-over, which once started was hard to change without
bothering all current users of the program. Fortunately, an approach to fixing this has now
been developed. Should a user begin developing a scenario using this older format the
software will automatically rename the sMaxDL as sDLMax in the ‘saudata.csv’ file to allow
correct usage of population-based conditioning, and it also issues a warning pointing out that
sMaxDL is deprecated and has been changed. The end result is that users can continue to use
older data files without issues arising. This strategy may be applicable to other deprecated
instances that have developed from the on-going implementation of expanded options within
aMSE.

8.3.5 Other Code Base Changes

With the advent of population level conditioning some novel model output relating to the
population scale have now been included in the standard aMSE output. These will enable the
individual dynamics within each population to be visualized and examined in more detail.
This will be of great value if, for instance, an investigation was made of the implications of
changing the Legal minimum length in SAU’s that have populations that exhibit large
differences in growth and productivity (as is now happening in Tasmania’s NorthWest).

Some of these additions are illustrated below from the sauX example, the four populations
were set up to have approximately two different levels of productivity.

Figure 8.1: The relationship between production and mature biomass depletion for the four populations in the sauX example
SAU.

Note how in Figure 8.1 all four populations have their maximum productivity at very similar
spawning biomass depletion levels despite having very different productivity. In fact, the
production is relatively flat between depletion levels of about 25 - 35 %

133

Figure 8.2: The relationship between production and mature biomass depletion in the sauX example SAU, at an expanded
scale.

Numerous other small but important changes were required in many places throughout the
aMSE codebase once the population-based conditioning was implemented to ensure that the
most recent changes do not alter the functionality of the software when population
conditioning is not used.

134

9. Perturbations within Projections

9.1 Introduction

Within the simulation framework used in aMSE, the population dynamics are not
deterministic and variation is introduced in the projections through random variation in the
predicted recruitment levels, through variation being introduced in the how the actual catches
are distributed among the populations (essentially this is in teh description of the fleet
dynamics), and finally, with variation being introduced into the expression of the predicted
cpue from the dynamics (this latter is important as all the current harvest strategy
performance measures are based upon the commercial cpue).

There are other sources of change and variation that are not accounted for. It is known that
there have been marine heatwave events that have led to mortality events observed by divers
(exceptional numbers of dead abalone shells washing back and forth in gutters). Such events
have been confirmed to correspond to observed oceanographic events entailing large
deviations from average sea temperatures. The effects of such heatwaves, destructive storm
events, and other external occurrences, such as toxic algal blooms, are not known from direct
observations except for the anecdotal observations from divers. These observations inform
that there has been an impact but provide no measure of the extent or severity of any such
impacts. When we apply a stock assessment model, such as that implemented in the sizemod
R package, effectively the dynamics as described by such models only identifies the catches
and recruitment deviates as the only drivers of the observed dynamics. Without real data on
possible impacts due to environmental events their scale of any impact cannot be estimated.

In Australia, there have been heatwave events whose impact is undeniable. In Western
Australia, during 2011?, a significant heatwave event occurred down the west coast with one
of its impacts being the effective elimination of the Haliotis roie stocks north of Perth. Other,
less severe heatwave events (and other such perturbations) potentially can have impacts on
survivorship of both the emergent and the cryptic animals currently alive. In addition, it is
simple to imagine that the physiological shocks experienced by mature animals may well
reduce recruitment success rather than induce death (i.e. sublethal effects). Given these
considerations a need has therefore been identified for having a facility within aMSE for
exploring the longer-term influence of possible perturbations to survivorship of currently
settled animals but also of perturbations to recruitment success in selected years. The
simulation framework is designed to explore the performance of different versions of abalone
harvest strategies. It is expected that marine heatwaves and other such perturbations will
occur into the future, so it will be valuable to be able to determine how each tentative harvest
strategy handles the possible outcomes of significant perturbations to either survivorship or
recruitment, or both.

9.2 Methods and Results

The capacity to introduce perturbations into the recruitment and the survivorship of post-
larval animals has been introduced in such a way that no changes are required if no
perturbations are wanted in a set of simulations. Thus, only if perturbations are required are
changed required, and the only changes required involve adding a few lines of detail into the
control file, which every scenario must have. No changes are required to any other files.

In the control file major sections are identified by capitalized headings such as ‘START’,
ZONE’, ‘RECRUIT’, and ‘RANDOM’. The new section can go anywhere but it is proposed

135

that when it is wanted it gets introduced between the ‘PROJECT’ and the ‘PROJLML’
sections. Thus, in a control file with no defined perturbations one might have:

…
initLML, 140, initial LML for the unfished zone if no historical catches used
PROJECT, 30, number of projection years for each simulation

PROJLML, need the same number as there are projection years
2021, 145, Legal Minimum Length (LML, MLL, MLS) e.g. 140
2022 , 145
…

To add a single year of perturbations we can add:

…
initLML, 140, initial LML for the unfished zone if no historical catches used
PROJECT, 30, number of projection years for each simulation

ENVIRON, 1, numbers of years of intervention
eyr, 5, which projection years will have an event
proprec1, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, one for each sau
propNt1, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, one for each sau

PROJLML, need the same number as there are projection years
2021, 145, Legal Minimum Length (LML, MLL, MLS) e.g. 140
2022 , 145
…
__

The new keyword is ‘ENVIRON’. The commas are important as they identify the separate
fields that aMSE needs to read.

This set up would impose a perturbation in the fifth projection year and the impact will force
the recruitment to be only 0.3 of the predicted recruitment level taken off the deterministic
stock-recruitment curve for each population, when it only had 10 percent of the usual random
recruitment variation that every other year experiences. Survivorship of post-larval animals
will be 99 percent, so only a tiny impact on emergent and cryptic animals. If once this section
has been introduced, one wants to turn off the perturbation then all that is needed is to set the
‘ENVIRON’ number = 0. That number must be greater than zero for there to be an effect.

With almost no impact on settled individuals the outcome on the dynamics only becomes
apparent after a delay of between 5 - 8 years.

136

Figure 9.1: Predicted catches across the whole Tasmanian western zone when a perturbation is introduced in the fifth
projection year (2025). The time-lag required for animals that should have settled that year mean that its effect only
becomes apparent 5 - 9 years after the event, in the low 2030s.

To add two years in which perturbations occur we can add:

…
initLML, 140, initial LML for the unfished zone if no historical catches used
PROJECT, 30, number of projection years for each simulation

ENVIRON, 2, numbers of years of intervention
eyr, 5, 8, which projection years will have an event
proprec1, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, one for each sau
proprec2, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, one for each sau
propNt1, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, one for each sau
propNt1, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, one for each sau

PROJLML, need the same number as there are projection years
2021, 145, Legal Minimum Length (LML, MLL, MLS) e.g. 140
2022 , 145
…
__

which gives rise to:

137

Figure 9.2: Predicted catches across the Tasmanian western zone when identical perturbations are introduced in both the
fifth and eighth projection years (2025 and 2028). The time-lag required for animals that should have settled that year mean
its effect only becomes apparent 5 - 9 years after the event, in the low 2030s, but this time extends for much longer to prevent
stock and fishery recovery.

9.3 Comparing Scenarios

When the results of these perturbations are compared with the identical harvest strategy with
no perturbations then the impacts become clearer.

Figure 9.3: The dynamics of the western Tasmanian zone comparing no perturbations as a base-case (grey), with the effect
of a single perturbation in 2025 (red), and a double perturbation in 2025 plus 2028 (green).

138

It should be clear that if a sequence of environmentally driven perturbations occur that
significantly disrupt the recruitment success, then the stock recovery will be compromised.
Given the increasing frequency of such events this is a real possibility that needs to be
included in any considerations given to rebuilding Tasmania’s abalone stocks.

Given the availability of this facility to introduce perturbations it is now possible to explore
how large a perturbation must be to have a significant impact (the example of repeated zone-
wide 70% reductions in recruitment success would constitute quite a severe impact). Now it
is possible to examine the effect of smaller scale events (at a scale of sau) on the potential
risk to stock rebuilding.

139

10. References

Anon (1966) Tasmanian abalone catch increases. Australian Fisheries Newsletter 25(4):7 &
13.

Beverton, R.J.H. and S.J. Holt (1957) On the dynamics of exploited fish populations. U.K.
Ministry of Agriculture and Fisheries, Fisheries Investigations (Series 2), 19: 1-533.

Beverton, R.J.H. (1992) Patterns of reproductive strategy parameters in some marine teleost
fishes. Journal of Fish Biology 41 (Supplement B):137-160.

Bradshaw, M. (ed) (2018) Tasmanian Abalone Fishery Sustainable Harvest Strategy Wild
Fisheries Management Branch, Department of Primary Industries, Parks, Water and
Environment. 30p.

Butterworth, D. S., and M. O. Bergh (1993) The development of a management procedure for
the South African anchovy resource. pp. 83–99. In _Risk Evaluation and Biological
Reference Points for Fisheries Management__, eds. S. J. Smith, J. J. Hunt, and D. Rivard.
Canadian Special Publication in Fisheries and Aquatic Sciences, 120.

FAO (1985) FAO. The First 40 Years. Food and Agricultural Organization of the United
Nations, Rome.

FAO (1995) Code of Conduct for Responsible Fisheries. Food and Agricultural Organization
of the United Nations, Rome. 41p.

FAO (1996) Precautionary Approach to Capture Fisheries and Species Introductions. FAO
Technical Guidelines for Responsible Fisheries 2. Food and Agricultural Organization of the
United Nations, Rome. 55p.

FAO (1997) Fisheries Management. FAO Technical Guidelines for Responsible Fisheries 4.
Food and Agricultural Organization of the United Nations, Rome. 84p.

Fournier, D.A. and C.P. Archibald (1982) A general theory for analyzing catch at age data.
Canadian Journal of Fisheries and Aquatic Sciences 39: 1195-1207.

Francis, R. I. C. C. (1992) Use of risk analysis to assess fishery management strategies: A
case study using orange roughy (Hoplostethus atlanticus) on the Chatham Rise, New
Zealand. Canadian Journal of Fisheries and Aquatic Science 49:922–30.

Garstang, W. (1900) The impoverishment of the sea - a critical summary of the experimental
and statistical evidence bearing upon the alleged depletion of the trawling grounds. Journal of
Marine Biological Association of the United Kingdom, 6: 1-69.

Gulland, J.A. (1965) Estimation of mortality rates. Annex to Arctic Fisheries Working Group
Report (meeting in Hamburg, January 1965). International Council for the Exploration of the
Sea, Document 3 (mimeo), Copenhagen. (cited in Megrey, 1989)

Haddon, M. (2007) Fisheries and their management. Pp 515-532. In Marine Ecology (eds)
S.D. Connell & B.M. Gillanders. Oxford University Press. 630 p.

Haddon, M. (2011) Modelling and Quantitative Methods in Fisheries. 2nd Ed.
CRC/Chapman & Hall. 449p.

140

Haddon, M. (2021) Using R for Modelling and Quantitative Methods in Fisheries. Chapman
and Hall/CRC. https://haddonm.github.io/URMQMF

Haddon, M. (2024) aMSE: A Framework for Abalone Management Strategy Evaluation An R
Package, version 0.3.5. https://github.com/haddonm/aMSE

Haddon, M. (2024a) aMSEGuide: Management Strategy Evaluation for Abalone Fisheries A
GitBook and PDF at HTTPS://haddonm.github.io/aMSEGuide

Haddon M (2024b). codeutils: Contains a Series of Utility Functions for File Handling and
Programming. R package version 0.0.15. https://github.com/haddonm/codeutils

Haddon M (2024c). hplot: Contains utility functions for when using base R graphics. R
package version 0.0.19, https://haddonm.github.io/hplot

Haddon M (2024d). makehtml: Provides Generic Code for Producing Tabbed HTML for
Presenting Plotted Results. R package version 0.1.2. https://haddonm.github.io/makehtml

Haddon M (2024e). sizemod: Implemetation of a Size-Based Assessment Model for Single
Populations. R package version 0.2.0, https://github.com/haddonm/sizemod.

Haddon, M., Ziegler, P., Lyle, J. and Burch, P (2005) Using a spatially structured model to
assess the Tasmanian fishery for Banded Morwong (Cheilodactylus spectabilis). Pp 737-756.
In Assessment and Management of New and Developed Fisheries in Data-Limited Situations.
Lowell Wakefield Symposia; Alaskan Sea-Grant Program.

Haddon, M. and F. Helidoniotis (2013) Legal minimum lengths and the management of
abalone fisheries. Journal of Shellfish Research 32:197-208.

Haddon, M. and F. Helidoniotis (2014) Modelling the Potential for Recovery of Western
Victorian Abalone Stocks: The Crags. Interim Report to 2012/225. Hobart. 61 p.

Haddon, M., Mayfield, S., Helidoniotis, F., Chick, R. and C. Mundy (2013) Identification
and Evaluation of Performance Indicators for Abalone Fisheries. FRDC Final Report
2007/020. CSIRO Oceans and Atmosphere and Fisheries Research Development
Corporation. 295 p.

Haddon M, Mundy C (2024). TasHS: Provides the Static Functions used in Tasmania’s
Abalone Harvest Strategy. R package version 0.1.15. https://github.com/haddonm/TasHS

Haddon M, Mundy C (2024b). EGHS: Example harvest control rules used with aMSEGuide
to illustrate MSE. R package version 0.0.2. https://github.com/haddonm/EGHS

Haddon, M. and C. Mundy (2016) Testing abalone empirical harvest strategies for setting
TACs and associated LMLs, which include the use of novel spatially explicit performance
measures. FRDC Final Report 2011/028. CSIRO Oceans and Atmosphere and Fisheries
Research Development Corporation. Hobart 182p.

Haddon, M., Mundy, C., and D. Tarbath (2008) Using an inverse-logistic model to describe
growth increments of blacklip abalone (Haliotis rubra) in Tasmania. Fishery Bulletin 106:58-
71.

Hastings, N. A. J., and J. B. Peacock (1975) Statistical distributions. London: Butterworths
and Co.

141

Helidoniotis, F., Haddon, M., Tuck, G., and D. Tarbath (2011) The relative suitability of the
von Bertalanffy, Gompertz and inverse logistic models for describing growth in blacklip
abalone populations (Haliotis rubra) in Tasmania, Australia. Fisheries Research 112: 13-21.

Hilborn, R. (2012) The evolution of quantitative marine fisheries management 1985 – 2010.
Natural Resource Modeling 25: 122-143.

Hilborn, R. and C.J. Walters (1992) Quantitative Fisheries Stock Assessment: Choice,
Dynamics, and Uncertainty. Chapman & Hall, London.

Jensen, A.L. (1996) Beverton and Holt life history invariants result from optimal trade-off of
reproduction and survival. Canadian Journal of Fisheries and Aquatic Sciences 53:820-822.

Larkin, P.A. (1977) An epitaph for the concept of maximum sustainable yield. Transactions
of the American Fisheries Society, 106: 1-11.

Ludwig, D., Hilborn, R. and C.J. Walters (1993) Uncertainty, Resource Exploitation, and
Conservation: Lessons from History. Science 260: 17 & 36.

Mace, P.M. and M.P. Sissenwine (1993) How much spawning per recruit is enough? p 101-
118 in Smith, S.J, Hunt, J.J. & D. Rivard (eds) Risk Evaluation and Biological Reference
Points for Fisheries Management. Canadian Special Publication of Fisheries and Aquatic
Sciences 120: 1-442.

Magnuson-Stevens Fishery Conservation and Management Act (2007) U.S. Department of
Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries
Service. p170. https://www.fisheries.noaa.gov/s3//dam-migration/msa-amended-2007.pdf (at
30/09/2024)

Maunder, M.N. and A.E. Punt (2013) A review of integrated analysis in fisheries stock
assessment. Fisheries Research 142:61-74.

Megrey, B.A. (1989) Review and comparison of age-structured stock assessment models
from theoretical and applied points of view. American Fisheries Society Symposium 6: 8-48.

Methot, R.D. (1989) Synthetic estimates of historical abundance and mortality in northern
anchovy. American Fisheries Society Symposium 6:66-82

Methot, R. D. (1990) Synthesis model: an adaptable framework for analysis of diverse stock
assessment data. International Northern Pacific Fishery Commission Bulleton 50: 259-277.

Methot, R.D. and I.G. Taylor (2011) Adjusting for bias due to variability of estimated
recruitments in fishery assessment models. Canadian Journal of Fisheries and Aquatic
Sciences 68:1744-1760.

Miller, K.J., Maynard, B.T. and C.N. Mundy (2009) Genetic diversity and gene flow in
collapsed and healthy abalone fisheries Molecular Ecology 18: 200-211.

Miller, K.J., Mundy, C.N., and S. Mayfield (2014) Molecular genetics to inform spatial
management in benthic invertebrate fisheries: a case study using the Australian Greenlip
Abalone Molecular Ecology 23: 4958-4975.

Mundy, C. (2012) Using GPS Technology to Improve Fishery Dependent Data Collection in
Abalone Fisheries. FRDC Final Report 2006-029. University of Tasmania and Fisheries
Research Development Corporation. 122 p.

142

Mundy, C., Jones, H. and D. Worthington (2018) Implementing a Spatial Assessment and
Decision Process to Improve Fishery Management Outcomes Using Geo‐Referenced Diver
Data FRDC Project No 2011-201. University of Tasmania and Fisheries Research
Development Corporation. 202 p.

Mundy, C., Haddon, M. and J. McAllister (2023) Assessment of commercial abalone
fisheries Developments in Aquaculture and Fisheries Science _42:__ 291-330.

Mundy, C., Venables, W., Haddon, M. and C. Dichmont (2024) Can spatial fishery-
dependent data be used to determine stock status in a spatially structured fishery? FRDC
Final Report 201/026. University of Tasmania and Fisheries Research Development
Corporation. 140 p.

Orensanz, J.M., Parma, A.M., Jerez, G., Barahona, N., Montecinos, M. and I. Elias (2005)
What are the key elements for the sustainability of “S-fisheries”? Insights from South
America. Bulletin of Marine Science 76: 527-556.

Parma, A.M., Orensanz, J.M. (Lobo), Elías, I. and G. Jerez (2003) Diving for shellfish and
data: incentives for the participation of fishers in the monitoring and management of artisanal
fisheries around southern South America, in: Newman, S.J., Gaughan, D.J., Jackson, G.,
Mackie, M.C., Molony, B., John, J.S., Kailola, P. (Eds.). Australian Society for Fish Biology
Workshop Proceedings - Towards Sustainability of Data-Limited Multi-Sector Fisheries.

Pikitch, E., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Essington, T., Heppell, S.S.,
Houde, E.D., Mangel, M., Pauly, D., Plagányi, É., Sainsbury, K., and Steneck, R.S. (2012)
Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean
Program. Washington, DC. 108 pp.

Pourtois, J.D., Provost, M.M., Micheli, F. and G.A.De Leo (2022) Modelling the effect of
habitat and fishing heterogeneity on the performance of a Total Allowable Catch-regulated
fishery. ICES Journal of Marine Science 79: 1467–1480. DOI: 10.1093/icesjms/fsac067

Prager, M.H. (1994) A suite of extensions to a nonequilibrium surplus-production model.
Fishery Bulletin 92: 374-389.

Punt, A.E., Butterworth, D.S., de Moor, C.L., De Oliveira, J.A.A. and M. Haddon (2016)
Management strategy evaluation: best practices. Fish and Fisheries 17: 303-334. DOI:
10.1111/faf.12104

Punt, A.E., Campbell, R.A., and Smith, A.D.M. (2001) Evaluating empirical indicators and
reference points for fisheries management: application to the broadbill swordfish fishery off
eastern Australia. Marine and Freshwater Research 52(6): 819-832.

Punt, A. E. and G.P. Donovan (2007) Developing management procedures that are robust to
uncertainty: lessons from the International Whaling Commission. ICES Journal of Marine
Science 64: 603–612.

Punt, A.E., Huang, T., Maunder, M.N., 2013. Review of integrated size-structured models for
stock assessment of hard-to-age crustacean and mollusc species. ICES Journal of Marine
Science 70: 16–33. https://doi.org/10.1093/icesjms/fss185

Punt, A.E., Smith, A.D.M., and G. Cui (2001) Review of progress in the introduction of
management strategy evaluation (MSE) approaches in Australia’s South East Fishery. Marine
and Freshwater Research 52:719-726.

143

R Core Team (2024). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Russell, E.S. (1931) Some theoretical considerations on the ”overfishing” problem. Journal
du Conseil International pour l’Exploration de la Mer 6: 3-20.

Schaefer, M.B. (1954) Some aspects of the dynamics of populations important to the
management of the commercial marine fisheries. Bulletin of the Inter-American Tropical
Tuna Commission 1: 25-56.

Schaefer, M.B. (1957) A study of the dynamics of the fishery for Yellowfin tuna in the
Eastern Tropical Pacific Ocean. Bulletin of the Inter-American Tropical Tuna Commission 2:
247-285.

Smith, T.D. (1988) Stock assessment methods: the first fifty years. In: Fish Population
Dynamics: The Implications for Management. (ed.) J.A. Gulland. pp 1-33. John Wiley &
Sons, Chichester.

Smith, A.D.M. (1994) Management Strategy Evaluation: The Light on the Hill. pp 249-253
in Hancock, D.A. (ed) Population Dynamics for Fisheries Management Australian Society
for Fish Biology Workshop Proceedings, Perth 24-25 August 1993. Australian Society for
Fish Biology. 298p.

Smith, S.J., Hunt, J.J., and D. Rivard (1993) Risk Evaluation and Biological Reference Points
for Fisheries Management. Canadian Special Publication of Fisheries and Aquatic Sciences
120: 1:442.

Smith, A.D.M. (1997) Quantification of objectives, strategies and performance criteria for
fishery management plans—an Australian perspective. p291–295. in Hancock, D.A., Smith,
D.C., Grant, A. and J.P. Beumer (eds) Developing and Sustaining World Fisheries Resources.
The State of Science and Management. Proceedings of the 2nd World Fisheries Congress.
CSIRO Publishing, Collingwood.

Smith, A.D.M. and A.E. Punt (2001) The gospel of maximum sustainable yield in fisheries
management: birth, crucifixion and reincarnation. Conservation of Exploited Species.
Reynolds, J.D., Mace, G.M., Redford, K.H. and J.G Robinson (eds). The Zoological Society
of London, Cambridge University Press. 505 p.

Sullivan, P. J., H.-L. Lai, and V. F. Gallucci (1990) A catch-at-length analysis that
incorporates a stochastic model of growth. Canadian Journal of Fisheries and Aquatic
Sciences 47:184–98.

Vasconcellos, M., and Cochrane, K. 2005. Overview of world status of data-limited fisheries:
Inferences from landings statistics. Fisheries Assessment and Management in Data-Limited
Situations 21: 1-20.

Venzon, D.J. and S.H. Moolgavkar (1988) A method for computing profile likelihood-based
confidence intervals. Applied Statistics, 37: 87-94.

144

11. Appendix: MSE Output Object Structure
After running the do_MSE function with its output pointed at the R list/object named out, we
can examine the contents of these objects using the base R function str(object,
max.level=1). That can sometimes lead to more information than is immediately useful so it
is often easier to use a codeutils wrapper function str1(out) or str2(out), which now
omit the attributes (see their respective help pages).

It will be noted that using str2 expands lists within lists, however, it will also be noted that
some of the objects have lists within lists within lists. Obviously the structure of any of these
objects can be examined by drilling further down, as for example one could use
str1(out$zoneCP[[1]]) to see the structure of each of the 56 population’s constants
definition object (as used in the projections; look at zoneC to see what was used during the
conditioning).

The main simulated results from the MSE are contained in a large object named out, which is
a list of 28 other objects, many of which are lists themselves.

11.1 Main Output R Objects from aMSE
List of 29
 $ tottime : 'difftime' num 2.94
 $ runtime : POSIXct[1:1], format: "2025‐01‐07 07:54:54"
 $ starttime : POSIXct[1:1], format: "2025‐01‐07 07:51:58"
 $ glb :List of 19
 $ ctrl :List of 13
 $ zoneCP :List of 56
 $ zoneD :List of 14
 $ zoneDD :List of 14
 $ zoneDP :List of 14
 $ NAS : NULL
 $ projC :List of 5
 $ condC :List of 15
 $ sauout :List of 10
 $ outzone :List of 13
 $ production : num [1:71, 1:6, 1:56] 256 244 233 223 213 ...
 $ condout :List of 2
 $ HSstats :List of 2
 $ saudat : num [1:32, 1:8] 21.5 0.3 130 1 54.3 ...
 $ constants : num [1:33, 1:56] 6 21.5 0.3 130 1 ...
 $ hsargs :List of 16
 $ sauprod : num [1:7, 1:8] 438.882 149.874 20.272 0.341 140.632 ...
 $ zonesummary :List of 2
 $ kobedata : num [1:8, 1:4] 0.33 0.449 0.258 0.242 0.313 ...
 $ outhcr :List of 8
 $ scoremed : num [1:30, 1:7] 42.8 35.3 31.8 31.5 33.4 ...
 $ popmedcatch :List of 8
 $ popmedcpue :List of 8
 $ popmeddepleB:List of 8
 $ pops : num [1:56, 1:26] 1 2 3 4 5 6 7 8 9 10 ...

145

The structure of each of the objects contained within out will be described with the objects
used in the running of the MSE described first, followed by outputs from the conditioning,
followed by outputs from the projections.

11.1.1 glb : List of 19

A globals object with its components used in many places

List of 19
 $ numpop : num 56
 $ nSAU : num 8
 $ midpts : num [1:105] 2 4 6 8 10 12 14 16 ...
 $ Nclass : num 105
 $ reps : num 250
 $ hyrs : num 58
 $ pyrs : num 30
 $ hyrnames : num [1:58] 1963 1964 1965 1966 ...
 $ pyrnames : int [1:30] 2021 2022 2023 2024 2025 2026 2027 2028 ...
 $ saunames : chr [1:8] "sau6" "sau7" "sau8" ...
 $ SAUpop : num [1:8] 3 3 5 7 9 9 12 8
 $ larvdisp : num 0.01
 $ indexCE : int 30
 $ envimpact: NULL
 $ warnfile : chr
"c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EG/warnings.txt"
 $ sauLML : num 0
 $ sauindex : num [1:56] 1 1 1 2 2 2 3 3 ...
 $ move : num [1:56, 1:56] 0.995 0.005 0 0 0 0 0 0 ...
 $ SAUnum : num [1:56] 6 6 6 7 7 7 8 8 ...

11.1.2 ctrl : List of 13

Variables used when controlling the MSE run.

List of 13
 $ runlabel : chr "Base_Case"
 $ datafile : chr "saudataEG.csv"
 $ controlfile: chr "controlEG.csv"
 $ reps : num 250
 $ randseed : num 3543304
 $ randseedP : num 0
 $ withsigR : num 0.35
 $ withsigB : num 0.1
 $ withsigCE : num 0.1
 $ catches : num 58
 $ projection : num 30
 $ bysau : num 1
 $ rundir : chr "c:/Users/malco/DropBox/A_codeR/aMSEGuide/runs/EG"

146

11.1.3 projC : List of 5

Other constants used during the projections. Note that projyrs = glb$pyrs, which is now used
more often in the code-base and eventually it will be deprecated in projC.

List of 5
 $ projLML: num [1:30, 1:2] 145 145 145 145 145 ...
 $ projyrs: num 30
 $ Sel : num [1:105, 1:56, 1:30] 9.48e‐35 2.84e‐34 ...
 $ SelWt : num [1:105, 1:56, 1:30] 5.41e‐38 1.44e‐36 ...
 $ histCE : num [1:29, 1:8] NA NA NA NA NA ...

The NA in the histCE vector reflects the fact that in SAU6 (the 8 SAU are across the
columns), like SAU13, has no CPUE data until 2000.

11.1.4 condC : List of 7

More constants used during conditioning; compdat holds the observed size-composition data
from each sau in lfs, as well as their relative proportions in palfs.

List of 15
 $ histCatch : num [1:58, 1:8] 0 1 2 8 22 31 24 29 39 33 ...
 $ histyr : num [1:58, 1:2] 1963 1964 1965 1966 1967 ...
 $ histCE : num [1:29, 1:8] NA NA NA NA NA ...
 $ yearCE : num [1:29] 1992 1993 1994 1995 1996 ...
 $ initdepl : num [1:8] 1 1 1 1 1 1 1 1
 $ compdat :List of 2
 ..$ lfs : num [1:38, 1:31, 1:8] 0 0 0 0 0 0 0 0 0 0 ...
 ..$ palfs: num [1:31, 1:8] 0 0 0 0 0 0 0 0 0 0 ...
 $ recdevs : num [1:58, 1:8] ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ...
 $ parsin : logi FALSE
 $ optpars : NULL
 $ sizecomp : num 1
 $ lffiles : chr "lf_WZ90‐20.csv"
 $ poprec : num [1:56, 1:3] 6 6 6 7 7 7 8 8 8 8 ...
 $ yearFIS : NULL
 $ fisindexdata: NULL
 $ fissettings : NULL

11.1.5 condout : List of 2

sauZone contains the conditioning dynamics across hyrs years summed across populations to
the sau scale for each of the dynamic variables. This ignores replicates, as found in zonePsau,
and is there more for convenience than needed. ssq is for each sau and reflects the difference
between the observed cpue and the predicted.

List of 2
 $ sauZone:List of 9
 ..$ matB : num [1:58, 1:9] 439 438 436 429 409 ...
 ..$ expB : num [1:58, 1:9] 415 414 413 409 395 ...
 ..$ midyexpB: num [1:58, 1:9] 0 431 430 428 421 ...

147

 ..$ catch : num [1:58, 1:9] 0 1 2 8 22 ...
 ..$ recruit : num [1:58, 1:9] 259139 259078 258961 258478 257088 ...
 ..$ harvestR: num [1:58, 1:9] NaN 0.00232 0.00465 0.0187 0.05228 ...
 ..$ cpue : num [1:58, 1:9] NA 437 436 432 422 ...
 ..$ deplsB : num [1:58, 1:9] 1 0.998 0.994 0.977 0.933 ...
 ..$ depleB : num [1:58, 1:9] 1 0.999 0.996 0.985 0.953 ...
 $ ssq : num [1:8] 385 1801 10159 2444 777 ...

11.1.6 zoneDD : List of 13

The dynamics object generated during conditioning. Each of the dynamic’s matrices are 2-
dimensional (years vs populations), the predicted size-composition matrices (catchN, Nt, and
NumNe) are 3-dimensional (size-class vs year vs population).

List of 14
 $ SAU : chr [1:56] "sau6" "sau6" "sau6" ...
 $ matureB : num [1:58, 1:56] 311 311 309 304 ...
 $ exploitB: num [1:58, 1:56] 293 293 292 289 ...
 $ midyexpB: num [1:58, 1:56] 0 305 304 303 ...
 $ catch : num [1:58, 1:56] 0 0.707 1.414 5.655 ...
 $ harvestR: num [1:58, 1:56] 0 0.00232 0.00465 0.01869 ...
 $ cpue : num [1:58, 1:56] 437 437 436 432 ...
 $ recruit : num [1:58, 1:56] 191443 191398 191312 190957 ...
 $ deplsB : num [1:58, 1:56] 1 0.998 0.994 0.978 ...
 $ depleB : num [1:58, 1:56] 1 0.999 0.996 0.985 ...
 $ catchN : num [1:105, 1:58, 1:56] 0 0 0 0 0 0 0 0 ...
 $ Nt : num [1:105, 1:58, 1:56] 1.91e+05 7.45e‐03 1.50e‐01 2.18 ...
 $ NumNe : num [1:105, 1:58, 1:56] 0 0 0 0 0 0 0 0 ...
 $ outfis : NULL

11.1.7 zoneCP : List of 56

The constants for each projected population in a list of lists (see str1(out$zoneCP[[1]])).

 ..$:List of 21- attr(*, “class”)= chr “abpop”
 ..$:List of 21- attr(*, “class”)= chr “abpop”
 ..$:List of 21- attr(*, “class”)= chr “abpop”
 ..$:List of 21- attr(*, “class”)= chr “abpop”
 …
 ..- attr(*, “class”)= chr “zoneC”

Each abpop is a list of 21 objects.

List of 21
 $ Me : num 0.154
 $ R0 : num 192282
 $ B0 : num 311
 $ ExB0 : num 293
 $ MSY : num 14.5
 $ MSYDepl : num 0.342

148

 $ bLML : num 132
 $ scalece : Named num 1.41
 $ qest : num 4.76
 $ lambda : num 0.75
 $ SaM : num 99.5
 $ popdef : Named num [1:22] 21.6 130.4 ...
 $ LML : Named num [1:58] 127 127 127 127 127 ...
 $ G : 'STM' num [1:105, 1:105] 1.67e‐09 4.54e‐08 ...
 $ Maturity: num [1:105] 3.02e‐10 4.73e‐10 ...
 $ WtL : num [1:105] 0.000571 0.005075 ...
 $ Emergent: num [1:105] 3.74e‐15 6.43e‐15 ...
 $ Select : num [1:105, 1:88] 6.81e‐45 3.49e‐44 ...
 $ SelWt : num [1:105, 1:88] 3.89e‐48 1.77e‐46 ...
 $ MatWt : num [1:105] 1.72e‐13 2.40e‐12 ...
 $ SAU : chr "sau6"

11.1.8 zoneDP : List of 14

The much larger dynamics object generated during the projections. Each of the dynamic’s
matrices are 3-dimensional having years x populations x replicates. The first year in the
model relates to the unfished state or the initial state, hence the zero for mid-year exploitable
biomass (midyexpB), catch, acatch, etc.

List of 14
 $ SAU : num [1:56] 6 6 6 7 7 7 8 8 ...
 $ matureB : num [1:88, 1:56, 1:250] 311 311 309 304 ...
 $ exploitB: num [1:88, 1:56, 1:250] 293 293 292 289 ...
 $ midyexpB: num [1:88, 1:56, 1:250] 0 305 304 303 ...
 $ catch : num [1:88, 1:56, 1:250] 0 0.707 1.414 5.655 ...
 $ acatch : num [1:88, 1:8, 1:250] 0 1 2 8 ...
 $ harvestR: num [1:88, 1:56, 1:250] 0 0.00232 0.00465 0.01869 ...
 $ cpue : num [1:88, 1:56, 1:250] 437 437 436 432 ...
 $ cesau : num [1:88, 1:8, 1:250] 0 437 436 432 ...
 $ catsau : num [1:88, 1:8, 1:250] 0 1 2 8 ...
 $ recruit : num [1:88, 1:56, 1:250] 191443 191398 191312 190957 ...
 $ deplsB : num [1:88, 1:56, 1:250] 1 0.998 0.994 0.978 ...
 $ depleB : num [1:88, 1:56, 1:250] 1 0.999 0.996 0.985 ...
 $ TAC : num [1:88, 1:250] 0 20 86 290 ...

11.1.9 NAS : List of 2

The size composition objects following projection. Each array is a 4-dimensional object
having size-class x year x population x replicates. Nt is the population structure while catchN
is the expected size-composition of the catch by population.

 ..$ Nt : num [1:105, 1:88, 1:56, 1:100] 1.61e+05 1.97e-06 8.07e-05 …
 ..$ catchN: num [1:105, 1:88, 1:56, 1:100] 0 0 0 0 0 0 0 0 0 0 …

When saving the out object from a run of the do_MSE function, if the includeNAS argument
is set = FALSE, then the NAS object will be set = NULL. This option exists because the NAS
object, made up of multiple 4-D arrays can be very large. so the output can increase from a
few 100s of Megabytes, or almost 2 Gigabytes.

149

11.1.10 sauout : a List

sauout is one of the major outputs from the MSE. It contains the dynamics for each sau in the
zone. Including:

List of 10
 $ matureB : num [1:88, 1:8, 1:250] 439 438 436 429 409 ...
 $ exploitB: num [1:88, 1:8, 1:250] 415 414 413 409 395 ...
 $ midyexpB: num [1:88, 1:8, 1:250] 0 431 430 428 421 ...
 $ catch : num [1:88, 1:8, 1:250] 0 1 2 8 22 ...
 $ acatch : num [1:88, 1:8, 1:250] 0 1 2 8 22 ...
 $ harvestR: num [1:88, 1:8, 1:250] NaN 0.00232 0.00465 0.0187 0.05228 ...
 $ cpue : num [1:88, 1:8, 1:250] 0 437 436 432 422 ...
 $ recruit : num [1:88, 1:8, 1:250] 259139 259078 258961 258478 257088 ...
 $ deplsB : num [1:88, 1:8, 1:250] 1 0.998 0.994 0.977 0.933 ...
 $ depleB : num [1:88, 1:8, 1:250] 1 0.999 0.996 0.985 0.953 ...

If the includeNAS argument is set = TRUE, then sauout would be a list of 12 objects that
would include:

 ..$ catchN : num [1:105, 1:88, 1:8, 1:100] 0 0 0 0 0 0 0 0 0 0 …

 ..$ Nt : num [1:105, 1:88, 1:8, 1:100] 2.59e+05 9.25e-03 1.90e-01 2.81

11.1.11 outzone : List of 12

outzone contains the projection dynamics across all years summed across populations and sau
to give the zone scale changes for each of the dynamic variables, including catchN and Nt
(being only 3-D arrays tends to reduce their size. outzone is another major output from the
MSE.

List of 13
 $ matureB : num [1:88, 1:250] 14541 14523 14445 14184 ...
 $ exploitB: num [1:88, 1:250] 14587 14578 14530 14361 ...
 $ midyexpB: num [1:88, 1:250] 0 15132 15113 15035 ...
 $ catch : num [1:88, 1:250] 0 20 86 290 ...
 $ acatch : num [1:88, 1:8, 1:250] 0 1 2 8 ...
 $ TAC : num [1:88, 1:250] 0 20 86 290 ...
 $ harvestR: num [1:88, 1:250] 0 0.00132 0.00569 0.01929 ...
 $ cpue : num [1:88, 1:250] 0 405 399 395 ...
 $ recruit : num [1:88, 1:250] 6705236 6704327 6700497 6687410 ...
 $ deplsB : num [1:88, 1:250] 1 0.999 0.993 0.975 ...
 $ depleB : num [1:88, 1:250] 1 0.999 0.996 0.984 ...
 $ catchN : num [1:105, 1:88, 1:250] 0 0 0 0 0 0 0 0 ...
 $ Nt : num [1:105, 1:88, 1:250] 6.71e+06 2.00e‐02 4.34e‐01 6.82 ...

11.1.12 outhcr

The objects contained in this are determined by a custom function written within each
jurisdiction. Each harvest strategy is very different from every other jurisdiction’s harvest
strategy, and each reaches its outcomes in different ways. The outhcr object is produced by a

150

custom function which is pointed to by the do_MSE argument makeouthcr. This uses a
valuable method in the R language where a function can have a different function as an
argument so that different functions can be applied in different circumstances (such as
jurisdictions having different harvest strategies). The listing below is for Tasmania but would
be different for South Australia and different again for Victoria. Note in Tasmania’s case
each object is a 3-D array of the projection years (30) x sau (8) X replicates (100; in real-life
scenario testing one would use perhaps 250 replicates as 100 might not be sufficient to define
the total variability expected).

List of 8
 $ g1s : num [1:30, 1:8, 1:250] 3.62 9.22 9.17 6.66 ...
 $ g4s : num [1:30, 1:8, 1:250] 6.08 6.49 9.17 9.31 ...
 $ targsc : num [1:30, 1:8, 1:250] 2.43 3.93 5.83 6.68 ...
 $ finalsc : num [1:30, 1:8, 1:250] 3.46 5.1 7 7.33 ...
 $ index : num [1:30, 1:8, 1:250] 4 6 7 8 10 9 8 9 ...
 $ catchmult: num [1:30, 1:8, 1:250] 0.85 1 1.05 1.1 1.2 1.15 1.1 1.15 ...
 $ metaflag : num [1:30, 1:8, 1:250] 0 0 0 0 0 0 0 0 ...
 $ cetarg : num [1:30, 1:8, 1:250] 122 122 122 122 ...

The projected final score (finalsc), in Tasmania, is that which is used to select which
aspirational catch multiplier (hcr in hsargs), is used in an sau. These data are used to generate
the plots seen in the scores tab in the aMSE output (as in finalscores_sauX.png files).

11.1.13 production 3D array

A 3d array of harvest rates x 6 dynamic variables x numpop, where the dynamic variables are
‘ExB’ exploitable biomass, ‘MatB’, mature biomass, ‘AnnH’, the annual harvest rate, ‘Catch’
the yield, the maximum of which is the MSY, ‘Deplet’, the equilibrium depletion that the
harvest rate leads to, and ‘RelCE’, the relative cpue predicted at that equilibrium.

 num [1:81, 1:6, 1:56] 256 244 233 223 213 …
 attr(*, “dimnames”)=List of 3 ..$: chr [1:81] “0” “0.005” “0.01” “0.015” … harvest

rates ..$: chr [1:6] “ExB” “MatB” “AnnH” “Catch” … dynamic variables ..$: chr
[1:56] “1” “2” “3” “4” … population number

11.1.14 condout : List of 2

Where sauZone is a list of 9 components 2-D matrices containing the conditioned state of
each of 8 sau (in this case 58-year’s of historical catches) as well as the complete zone (for
Tasmania) in the ninth column.

List of 2
 $ sauZone:List of 9
 ..$ matB : num [1:58, 1:9] 439 438 436 429 409 ...
 ..$ expB : num [1:58, 1:9] 415 414 413 409 395 ...
 ..$ midyexpB: num [1:58, 1:9] 0 431 430 428 421 ...
 ..$ catch : num [1:58, 1:9] 0 1 2 8 22 ...
 ..$ recruit : num [1:58, 1:9] 259139 259078 258961 258478 257088 ...
 ..$ harvestR: num [1:58, 1:9] NaN 0.00232 0.00465 0.0187 0.05228 ...
 ..$ cpue : num [1:58, 1:9] NA 437 436 432 422 ...
 ..$ deplsB : num [1:58, 1:9] 1 0.998 0.994 0.977 0.933 ...

151

 ..$ depleB : num [1:58, 1:9] 1 0.999 0.996 0.985 0.953 ...
 $ ssq : num [1:8] 385 1801 10159 2444 777 ...

11.1.15 HSstats : List of 2

Two HS performance measures, the sum of catches across the first 5 and first 10 years of the
projections. In this case, this is for each of SAU used separately, and for the combined zone
total.

List of 2
 $ sum10: num [1:250, 1:9] 93.1 84 77.4 79.2 92.4 ...
 $ sum5 : num [1:250, 1:9] 33.7 30.9 28.1 28 34.7 ...

11.1.16 saudat : is an array of constants

This is a copy of the input constants read in from saudata_Scenario.csv in case comparisons
are wanted.

 num [1:32, 1:8] 21.5 0.3 130 1 54.3 ...

11.1.17 constants : an array of constants

The actual biological and fishery constants used to define each population.

 num [1:33, 1:56] 6 21.5 0.3 130 1 ...

11.1.18 hsargs a copy of the hsargs

This is a copy of the hsargs used in the example scenario and will depend upon the HS used.
For Tasmania it is a List of 16:

List of 16
 $ mult : num 0.1
 $ wid : num 4
 $ targqnt : num 0.55
 $ maxtarg : num [1:8] 150 150 150 150 150 150 150 150
 $ pmwts : num [1:3] 0.65 0.25 0.1
 $ hcr : num [1:10] 0.25 0.75 0.8 0.85 0.9 1 1.05 1.1 1.15 1.2
 $ hcrm3 : num [1:10] 0.25 0.75 0.8 0.85 0.9 1 1.1 1.2 1.25 1.3
 $ startCE : num 2000
 $ endCE : num 2019
 $ metRunder : num 0
 $ metRover : num 0
 $ decrement : num 1
 $ pmwtSwitch: num 0
 $ stablewts : num [1:3] 0.8 0.15 0.05
 $ hcrname : chr "constantrefhcr"
 $ printmat : NULL

152

11.1.19 sauprod : a 7 x nsau matrix

A matrix of productivity characteristics for each sau. These include the 𝐵0, 𝐵ெௌ, 𝑀𝑆𝑌,
𝐷ெௌ (depletion at 𝑀𝑆𝑌 and 𝐵ெௌ), and 𝐶𝐸ெௌ, the predicted cpue at 𝑀𝑆𝑌.

Productivity properties by SAU

 sau6 sau7 sau8 sau9 sau10 sau11 sau12 sau13

B0 438.88 872.17 524.48 2438.88 2071.96 4152.79 3126.26 915.91

Bmsy 149.87 272.80 166.07 748.36 616.67 1257.99 951.36 303.99

MSY 20.27 43.74 24.94 122.49 102.78 207.63 156.60 41.74

Dmsy 0.34 0.31 0.32 0.31 0.30 0.30 0.30 0.33

CEmsy 140.63 115.89 194.81 198.17 142.31 140.29 91.11 75.48

Hmsy 0.20 0.20 0.17 0.18 0.17 0.18 0.17 0.19

Bexmsy 91.32 191.66 126.23 600.53 536.12 1018.44 792.97 193.29

11.1.20 scoremed

This contains arrays of the outputs from the HS for each sau and each replicate, along with
the median values for each of the arrays.

 num [1:30, 1:7] 42.8 35.3 31.8 31.5 33.4 ...

153

12. The JurisdictionHS File or Package

12.1 Use an R source File or an R Package?

The abalone harvest strategies that have been implemented in different jurisdictions around
Australia differ markedly from each other and do so in multiple ways. Initially, in the early
planning stage of the MSE R package (aMSE), it was envisaged that each harvest strategy
would be included as a series of R functions within the package. However, it quickly became
apparent that such an approach would fix each harvest strategy in a single configuration,
which would defeat one of the major advantages of an MSE framework. Thus, it was decided
that a better approach would be:

1. Each jurisdiction to develop and maintain a separate R package that encapsulates all the
functions required by their respective harvest strategies and their interaction with
aMSE. The use of an R package is likely to be the most efficient option and would
help ensure maintenance and modification of the HS within the MSE would adhere to
good practices with respect to documentation and transparency. This would also aid
each jurisdiction in simplifying the task of becoming more transparent, defensible,
and open about each harvest strategy.

However, a viable option, especially when under development, would be:

2. To have each jurisdictions harvest strategy (HS) defined as a series of functions and
constants in a separate R source file that could be source’d into the R environment
prior to running the MSE,

The Tasmanian implementation of the MSE started by using a source R file but has moved
the functions developed into its own defined R package TasHS. The list of constants used by
the TasHS (defined as hsargs within aMSE see later) must still be defined as a global
variable when running the MSE.

12.1.1 Important Caveat

It must be emphasized here that any statement in this document concerning the structure and
operation of the Tasmanian harvest strategy, which will be used as an example, must not be
taken as a formal statement of the HS. That can be found in the actual harvest strategy
document (Bradshaw, 2018), which is currently undergoing changes as a result of a formal
review as well as suggested changes as a result of the MSE testing. Thus, whatever
description is given here must not be taken as “the” Tasmanian harvest strategy at any future
time. For details of the implementation of the Tasmanian harvest strategy, read Bradshaw
(2018) and the separate documentation to the TasHS R package.

This chapter/section is going to be more technical than others as it involves a description of
the interaction between the HS functions and the internal functions running the replicate
projections within the aMSE R package.

12.1.2 Where the Harvest Strategy is used in aMSE

Running a scenario within aMSE entails first conditioning the Operating Model within the
MSE using biological information relating to maturity, growth, natural mortality, and other
productivity related factors. Then any historical fishery data involving catches, catch rates,
survey results, and catch sampling results can be used to further condition the model so that

154

its dynamics more closely match the observed dynamics of the fishery being explored. The
conditioning period is taken to be that period over which the harvest strategy being tested was
not applied (within the aMSE code, this is denoted as a period of hyrs, as in history years).
Thus, the assumption is that the harvest strategy begins in the first year of the projections
(hyrs + 1) and will continue to be applied in each year of the projections. In Tasmania, the
harvest strategy was used informally by the Institute of Marine and Antarctic Sciences
(IMAS) to recommend aspirational catches for each statistical block (sau) since 2016 and
used formally to identify the block aspirational catches since 2020. Thus, if using data up to
the end of 2020, one could start the predictions from 2020 or from 2021. For comparability
with other jurisdictions 2021 is used so the assumption is that the HS is used from the start of
projections.

The stock dynamics, within the model, are stored in an object called zoneDP (as in zone
Dynamics + Projections; see the R_object_structure chapter). For each year (and replicate)
within each population, these dynamics are updated to contain another year of the dynamics,
which involves the cycle of half of natural mortality, growth, fishing mortality, the second
half of natural mortality, and recruitment (with larval movement).

At the start of each year of the projections, within the function doprojections(), data required
by the particular harvest strategy being applied is sampled from the MSE’s zoneDP object.

Depending on the HS there may be a need to obtain samples of one or more of:

1. the commercial cpue,

2. any available fishery independent index of abundance,

3. the numbers-at-size in the commercial catch, and

4. the numbers-at-size predicted for a fishery independent survey, if available.

In addition, the actual catches and the aspirational catches are also required, though these are
expected to be the same in South Australia. Currently, no other data streams are supported by
the aMSE’s operating model. All these are included in the MSE function doprojections()
using the following code.

155

 hcrout <‐ makeouthcr(glb,hsargs) # make an object ready to be filled
Within aMSE, in the function doprojections is the following loop
 for (year in startyr:endyr) { # startyr = hyrs+1, endyr = hyrs + pyrs
 if (verbose) cat(year," ") # indicate status of run by year countdown
 for (iter in 1:reps) { # reps = number of replicate projections used
 hcrdata <‐ getdata(sampleCE,sampleFIS,sampleNaS, # generate the data
 sauCPUE=zoneDP$cesau[,,iter], # needed by the HS by
 sauacatch=zoneDP$acatch[,,iter], # calling getdata
 sauNAS=list(Nt=zoneDP$Nt[,,,iter],
 catchN=zoneDP$catchN[,,,iter],
 NumNe=zoneDP$NumNe[,,,iter]),
 year=year,decrement=hsargs$decrement)
 hcrout <‐ hcrfun(hcrdata,hsargs,saunames=glb$saunames) # run the hcr
 popC <‐ calcpopC(hcrout,exb=zoneDP$exploitB[year‐1,,iter], # hcr output
 sauindex,sigmab=sigmab) #= acatch by SAU or TAC by zone
 # calcpopC has a fleet dynamics model that subdivides the acatch or TAC
 # among the populations within each SAU
 # ... other code
 }
 # ... other code
}

The functions relating to the harvest strategy (HS) used in the projections within aMSE have
specific names. However, this is not a constraint on the user as some of the arguments of the
function doprojections() are the names given to the functions representing sampleCE(),
sampleFIS(), and sampleNAS(), each of which can be named as the user wishes (see the help
file for doprojections() or do_MSE()). The same thing goes for the getdata() function, which
calls the three sampling functions. In TasHS, the function that does the data sampling is
called tasdata() and, hence, one of the arguments of do_MSE() and then doprojections(),
which is inside do_MSE(), is therefore set as ‘getdata = tasdata’.

Also included in the HS package or source file is the hcrfun, which in Tasmania is the
mcdahcr() function this takes the input data from getdata(), runs the implementation of the
HS and outputs, at least, the predicted TAC by zone or aspirational catch by SAU, or both.
This output is then put into the calcpopC() function (in Tas this is calcexpectpopC()), which
uses a relatively simple model of the fleet dynamics (how the divers distribute the quota they
have available to them) to determine how the aspirational TAC or acatches by SAU are
subdivided among the populations within each SAU. Ideally, the predicted catch by SAU,
which is all that can be observed in the real fishery, should approximate how the catches are
distributed among the real SAU. This is less difficult to arrange in Tasmania now that there
have been meta-rules included in the HS that constrain how far the divers may deviate from
the proposed aspirational catch per SAU (statistical block in Tas). That also allows for
diagnostic plots of the predicted deviations to be generated from the projections that are used
to monitor the MSE simulation performance.

The idea being used is that the getdata() function has arguments that define each of these
functions, and also has arguments that reference particular data fields from the dynamic
object (zoneDP) so that the data required by the harvest strategy can be sampled or generated
by each of the three ‘sample’ functions. Within the doprojections() function the structure of
zoneDP consists of:

156

..$ SAU : num [1:56] 6 6 6 7 7 7 8 8 8 8 …

..$ matureB : num [1:88, 1:56, 1:100] 322 321 320 315 301 …

..$ exploitB: num [1:88, 1:56, 1:100] 281 305 303 298 284 …

..$ midyexpB: num [1:88, 1:56, 1:100] 303 330 329 328 323 …

..$ catch : num [1:88, 1:56, 1:100] 0 0.719 1.441 5.763 15.85 …

..$ acatch : num [1:88, 1:8, 1:100] 0 1 2 8 22 …

..$ harvestR: num [1:88, 1:56, 1:100] 0 0.00236 0.00475 0.01932 …

..$ cpue : num [1:88, 1:56, 1:100] 359 390 389 385 373 …

..$ cesau : num [1:88, 1:8, 1:100] 0 386 385 381 369 …

..$ catsau : num [1:88, 1:8, 1:100] 0 1 2 8 22 …

..$ recruit : num [1:88, 1:56, 1:100] 161023 160996 160943 160725 …

..$ deplsB : num [1:88, 1:56, 1:100] 1 0.998 0.994 0.978 0.934 …

..$ depleB : num [1:88, 1:56, 1:100] 0.853 1.084 1.079 1.061 1.011 …

..$ Nt : num [1:105, 1:88, 1:56, 1:100] 1.61e+05 1.97e-06 …

..$ catchN: num [1:105, 1:88, 1:56, 1:100] 0 0 0 0 0 0 0 0 0 0 …

..$ NumNe : num [1:105, 1:88, 1:56, 1:100] 1.61e+05 1.97e-06 …

..$ TAC : num [1:88, 1:100] 0 20 86 290 775 …

Obviously, if one looks at this after a given run the values seen will differ from these, but the
structure remains the same (in this case the 88 will reflect the hyrs + pyrs, the 56 the number
of populations used, the 100 the number of replicates used, and the 105 the number of size
classes used).

The 4-dimensional arrays holding the numbers-at-size arrays are removed from zoneDP and
put into NAS after being output from do_MSE(). However, within doprojections() each object
can be individually referenced by population or iteration. Note, in the code above the data
pushed into getdata is zoneDP$cesau, zoneDP$acatch, and zoneDP$NAS (a combination of
Nt and catchN).

12.1.3 Inclusion of a Jurisdiction’s HS

If using a source file then the constants needed by the HS functions could be included in the
source file. If using a library (R package) then either a source file only containing the
constants could be used or the hsargs list could be entered explicitly in the R code used to run
an MSE scenario in aMSE. For example:

157

hsfile <‐ "TasHS1_Tas.R"
source(paste0(rundir,"/",hsfile)) # if using a source file of R functions
library(TasHS) # if using an independent R library the HS
constants in a list still need to be made into a global list object
hsargs <‐ list(mult=0.1, # expansion factor for cpue range when calc the targqnt
 wid = 4, # number of years in the grad4 PM
 targqnt = 0.55, # quantile defining the cpue target
 maxtarg = c(150,150,150,150,150,150,150,150), # max cpue Target
 pmwts = c(0.65,0.25,0.1), # relative weights of PMs
 hcr = c(0.25,0.75,0.8,0.85,0.9,1,1.05,1.1,1.15,1.2),# multipliers
 hcrm3 = c(0.25,0.75,0.8,0.85,0.9,1,1.1,1.15,1.2,1.25),
 startCE = 2000, # used in constant reference period HS
 endCE = 2011, # used in constant reference period HS
 metRunder = 0, # should the metarules be used. o =
 metRover = 0, # use metarules
 decrement=1, # use fishery data up to the end of the time series
 pmwtSwitch = 0, # number of years after reaching the targCE to
 stablewts = c(0.4, 0.5, 0.1), # replace pmwts with stablewts
 hcrname="mcdahcr", # the name of the HCR used
 printmat=NULL) # An option required in some jurisdictions
This approach would place the functions making up the Tasmanian Harvest Strategy
into the main R environment ready for use in a Tasmanian setting.

Each of the members of hsargs fulfils a specific task within the harvest strategy. In the case
of the Tasmanian HS the items within hsargs have the following intentions:

1. mult the multiplier on the performance measure bounds to expand them both upwards
and downwards. default value = 0.1 = 10 percent increase and decrease.

2. wid the number of years over which to calculate the gradient, default value = 4,
meaning four years.

3. targqnt what quantile of the distribution of cpue to use as the target, default value =
0.55.

4. maxtarg is the maximum cpue target for each sau, this will vary depending on which
sau one is working with.

5. pmwts what weights to give to each of the performance measures. Their order is
targetCE, grad4, and grad1 with default values = c(0.65, 0.25,0.1).

6. hcr is used to translate the overall score between 0 - 10, into a multiplier for the
previous aspirational catch.

7. hcrm3 multipliers used instead of hcr when meta-rule 3 is active.
8. startCE is the starting year for CPUE used in Tasmania, the default = 1992. Also used

as the start year when using constrefhcr() instead of mcdahcr()
9. endCE the final year of CPUE used in Tasmania when using the constrefhcr, otherwise

it is ignored.
10. metRunder = 2 meta rule 1, when the cpue is below the targCPUE how many

consecutive years must cpue rise before a reduction is NOT made. If set to zero then
meta-rule 1 is not used.

158

11. metRover = 2 meta rule 2, how many consecutive years of increase above the
targCPUE must cpue occur before an increase can be made. If set to zero then meta-
rule 2 is not used.

12. decrement = 1 working in the year after the data are available, if decrement = 1 means
use all data up to the latest year even if only partial (as in TAS). Using decrement = 2
means omit the final (partial) year of data from the assessment (as in SA).

13. pmwtSwitch = 4 how many consecutive years of increase above the targCPUE must
occur before switching the performance measure weights from pmwts to stablewts
and switching the acatch multipliers from hcr to hcr3. If pmwtSwitch = 0 then no
change is made to the PM weights or to the acatch multipliers.

14. stablewts = c(0.4,0.5,0.1), what performance measure weights should be used once
pmwtSwitch is triggered.

15. hcrname = “constantrefhcr” the name of the harvest control rule used. Alternatives in
Tasmania could be consthcr() (a constant catch HS) and mcdahcr(), that used a
constant reference period defined by startCE and endCE.

16. printmat = NULL an option to print out a matrix during development, only used in
some jurisdictions.

12.2 What Must be Included in the HS File or Package

All harvest strategies (HS) have arguments, settings and other constants that can be altered to
influence the performance of the HS (hence hsargs). The Tasmanian HS uses the list as
described in the code sequence just above. If, somehow, the HS does not require such
constants then hsargs should be set = NULL as hsargs is still required as a global variable by
the aMSE code.

The TasHS package currently contains 23 functions but, in terms of interacting with the MSE
only eight are used directly. The other fifteen are used by these interacting functions. Within
the HS file all of these functions can be called whatever the programmer wishes as they are
referenced as arguments for functions within aMSE.

The eight required functions are always needed, even if the data they are supposed to
generate is not used. In such cases then a simple function returning NULL will suffice. For
example, if no FIS data is currently used in an HS then one might include a function:

tasFIS <‐ function() { # currently no FIS data is used in TAS
 return(NULL) # though this may change
} # end of tasFIS

The first three of the required functions are the sampling functions that take output from the
operating model and sample the respective data for input into the selected jurisdictions HS.
The fourth and fifth functions use the first three to sample simulated fishery data from the
MSE projections and then run the harvest control rule. The sixth required function uses the
outputs from hcrfun to generate the expected or aspirational catches by sau and by zone, the
sum of the sau catches should equal the total zone catch and both are the same as the
expected TAC. The last two functions relate to extracting the internal components of the
harvest control rule (the scores and weights, etc) so that the operation of the hcr can be

159

monitored. The makeouthcr() function is designed to capture the hcr information as it is
generated, while the HSPMs() is used to reconstruct the hcr components after all projections
are completed (which is likely to be more efficient computationally, especially if it is not
required!).

The eight function names in the listing below are the names as defined in the code base of
aMSE. The names used in each jurisdiction can be anything. The start of the call to
do_MSE() illustrates how each of the following is an argument in the do_MSE() function and
how this provides the opportunity to allocate each of these functions that are internal to
aMSE to jurisdiction specific functions residing in an external source file or R package. The
eight functions after hsargs, from hcrfun downwards, all need a definition within the
jurisdiction’s R package or R source file, even if they only return NULL. Details are given
below but are also available in the help for ?do_MSE.

out <‐ do_MSE(rundir,controlfile, # needs a global definition
 hsargs=hsargs, # defined as global object, see above
 hcrfun=mcdahcr, # the main HS function from TasHS
 sampleCE=tasCPUE, # processes cpue data, from TasHS
 sampleFIS=tasFIS, # processes FIS data (see above), from TasHS
 sampleNaS=tasNaS, # processes Numbers‐at‐Size data, from TasHS
 getdata=tasdata, # extracts data from zoneDP objects, from TasHS
 calcpopC=calcexpectpopC, #spreads SAU acatch across populations
 makeouthcr=makeouthcr, # generates updateable HS stats object
 fleetdyn=NULL, # an optional function defining the fleet dynamics
 scoreplot=plotfinalscores, # plots hcr and total scores from HS
 plotmultflags=plotmultandflags,#plots TAC/acatch multipliers and
 # meta rule flags
 ...
 ...

)

1. sampleCE() is used to sample or select data from the cpue predicted by the MSE. It
should also include uncertainty (variability) from the predicted cpue by sau. The
output from sampleCE should be the projected cpue data used by the HS function (see
hcrfun).

2. sampleNaS() is used to sample numbers-at-size data from the commercial catch if it is
used in the HS. If such data is not used in the HS a function is still required but it can
simply return NULL. The output should be the numbers-at-size data expected to be
used by the HS function (see hcrfun).

3. sampleFIS() is used to sample both cpue and numbers-at-size as if they came from
fishery independent surveys. Again, if such data is not used then a function is still
required but it can simply return NULL (as in tasFIS() immediately above). The
output should be any FIS data used by the HS function (see hcrfun).

4. getdata() calls the three sampling functions as arguments and must expect to receive for
each sau, the projected years in each replicate of: 1) the predicted time series of cpue,
the time series of expected catches, and a large object containing the expected
distribution of the numbers-at-size in the commercial catches, the numbers-at-size in
the population prior to fishing mortality, and the numbers-at-size in the population

160

after fishing mortality. The latter two would be needed if a fishery independent survey
were to be used. The output from getdata() should be a list containing the data needed
by the jurisdictions HS. It should take on the format that suits the programmer as it is
they who will be writing the getdata and hcrfun functions. For example, in TasHS,
the output of getdata() is a list of the cpue data used, the years used, and the
aspirational catches in each sau.

5. hcrfun() this is the function that represents the harvest control rule. It should take in the
output from getdata() and whatever else it requires. It will likely use other functions
from the HS file to conduct the calculations required to implement the harvest
strategy and its harvest control rule. Its outputs must include, at least, a TAC for the
simulated zone in the following year of projections, as well as the expected or
aspirational catches for each sau. The Tasmanian HS generates aspirational catches
for each sau and sums those to produce a TAC for the simulated zone. The South
Australian HS only generates a predicted TAC so it could set the aspirational catches
= NULL. Nevertheless, the simulation requires that the total catch is distributed
among the available sau and this will likely require the dive fleet dynamics to be
modelled so that how effort and subsequent catch is distributed can be estimated.
Even where aspirational catches are estimated directly, when a fishery operates there
is invariably noise associated with such caches and the actual catches by sau differ
from the aspirational catches. The final required function is used to model what
catches will actually be taken from each sau in the following projection year. In the
outputs from the MSE, this is the difference between the acatch (aspirational catches
per sau) and the catch (the actual catch per sau).

6. calcpopC() a function that takes the output from the hcrfun (at least the aspirational
catches and TAC) and estimates the actual catches per sau. This may entail
application of some dive fleet dynamics to decide the distribution of catches/effort, as
well as the application of noise to include uncertainty in the simulations. Even if
management in a jurisdiction only generates a zone-wide TAC the projections require
a method for predicting the actual catches taken from each sau (which then need to be
distributed across each sau’s populations).

7. makeouthcr() function (which by chance has an identical name in TasHS) should be
designed to harvest the hcr scores while the projections are proceeding. This option
sounds sensible but has the disadvantage that it will lead to large R objects, needed to
store each iteration’s hcr outputs, being passed back and forth between aMSE and the
external functions. If these objects become very large, which is very possible if the
data includes the size-composition data, this will become very inefficient.

8. fleetdyn() a function that defines the fleetdynamics used by aMSE to describe how the
aspirational catches are then distributed across the sau. If not used, as is currently the
case in Tasmania, then set this to NULL.

9. scoreplot() plots the hcr scores and final scores. This will be unique to each
jurisdiction’s harvest strategy and should be included in either the same source file or
package as the harvest strategy itself, or a separate source file to be included when
defining each scenario.

10. plotmultflags() like scoreplot this will be unique to each jurisdiction’s harvest strategy
and should be included in either the same source file or package as the harvest
strategy itself.

161

12.3 Outputs from Each Harvest Strategy

12.3.1 aMSE Implementation

A typical scenario run of the aMSE software, after the initial setup of directories, and
populating hsargs, might appear as follows:

out <‐ do_MSE(rundir,controlfile,hsargs=hsargs,hcrfun=mcdahcr,
 sampleCE=tasCPUE,sampleFIS=tasFIS,sampleNaS=tasNaS,
 ...)

The important part is the generation of the out object (a long list of result objects), which can
then be used for plots and eventually within comparisons with other scenarios.

The primary object relating to the harvest control rule performance is termed outhcr, as in
‘output of the harvest control rule’. The different harvest strategies implemented in South
Australia, Tasmania, and Victoria, all have different outputs from their harvest strategies.

12.3.2 Tasmania

outhcr for Tasmania is a list of eight 3D arrays of dimension projection_years x SAU x
replicates.

 g1s : num [1:30, 1:8, 1:250] 3.612 8.985 … gradient 1 scores
 g4s : num [1:30, 1:8, 1:250] 6.074 6.171 … gradient 4 scores
 targsc : num [1:30, 1:8, 1:250] 2.442 3.759 … target cpue scores
 finalsc : num [1:30, 1:8, 1:250] 3.467 4.885 … final combined scores
 index : num [1:30, 1:8, 1:250] 4 5 1 2 2 4 … TAC mult index from hsargs
 catchmult: num [1:30, 1:8, 1:250] 0.85 0.9 … TAC multiplier value
 metaflag : num [1:30, 1:8, 1:250] 0 0 0 0 0 0 … which metarule occurred
 cetarg : num [1:30, 1:8, 1:250] 121 121 120 … the CPUE target

12.3.3 South Australia

outhcr for South Australia is a list of 12 3D arrays of dimension projection_years x SAU x
replicates. The cesau and catch are included in their outhcr for convenience.

 cesau : num [1:30, 1:8, 1:250] 100.5 94.4 113.9 34.9 45.2 …
 CPUE_score : num [1:30, 1:8, 1:250] 0.607 0 2.519 0 0 …
 FIS_score : num [1:30, 1:8, 1:250] NA NA NA NA NA NA NA NA NA NA …
 Combined_score : num [1:30, 1:8, 1:250] 0.607 0 2.519 0 0 …
 Score_carried : num [1:30, 1:8, 1:250] 0 0 0 0 0 0 0 0 0 0 …
 catch : num [1:30, 1:8, 1:250] 16 7 0.619 0.621 2.292 …
 prop_TAC : num [1:30, 1:8, 1:250] 0.0282 0.0267 0.0255 0.026 0.027 …
 Weighted_SAU_score: num [1:30, 1:8, 1:250] 0.0171 0 0.0643 0 0 …
 Zone_score : num [1:30, 1:8, 1:250] 0.972 0.298 1.077 0 0 …
 Adjustment : num [1:30, 1:8, 1:250] 0.02 0.02 0.117 0.02 0.02 …
 Base_TACC : num [1:30, 1:8, 1:250] 1141 1141 1141 1141 1141 …
 TACC : num [1:30, 1:8, 1:250] 22.2 22.7 81.4 21 21.3 …

162

12.3.4 Victoria

outhcr for South Australia is a list of 28 3D arrays of dimension projection_years x SAU x
replicates.

 Limit : num [1:30, 1:8, 1:250] 80 80 80 …
 Thres : num [1:30, 1:8, 1:250] 120 120 …
 Target : num [1:30, 1:8, 1:250] 170 170 …
 Mean.CPUE.5 : num [1:30, 1:8, 1:250] 101.3 82.3 …
 Mean.CPUE.4 : num [1:30, 1:8, 1:250] 82.3 78 88 …
 Mean.CPUE.3 : num [1:30, 1:8, 1:250] 78 88 96.8 …
 Mean.CPUE.2 : num [1:30, 1:8, 1:250] 88 96.8 …
 Mean.CPUE.1 : num [1:30, 1:8, 1:250] 96.8 100.5 …
 Mean.CPUE.0 : num [1:30, 1:8, 1:250] 100.5 94.4 …
 CurrentStatus : chr [1:30, 1:8, 1:250] “Limit to Threshold” …
 Years.At.Current.Status: num [1:30, 1:8, 1:250] 3 4 5 1 2 …
 CCROld : chr [1:30, 1:8, 1:250] “1” “1” …
 CCR : chr [1:30, 1:8, 1:250] “1” “1” …
 yr4Gradient : num [1:30, 1:8, 1:250] 9.62 2.49 …
 PrimaryIndicator : chr [1:30, 1:8, 1:250] “Increasing” …
 yr2ratio : num [1:30, 1:8, 1:250] 3.8 -6.1 16.7 …
 SecondaryIndicator : chr [1:30, 1:8, 1:250] “Stable” …
 PrimaryCategory : chr [1:30, 1:8, 1:250] “Increasing” …
 FinalCategory : chr [1:30, 1:8, 1:250] “Increasing” …
 OT : num [1:30, 1:8, 1:250] 7 7.84 7.42 …
 OT.lower : num [1:30, 1:8, 1:250] 7 6.66 7.05 …
 OT.upper : num [1:30, 1:8, 1:250] 8.05 7.45 …
 acatch : num [1:30, 1:8, 1:250] 7.84 7.42 …
 TAC : num [1:30, 1:8, 1:250] 473 382 364 …
 boundup : num [1:30, 1:8, 1:250] -5 -5 -5 -5 …
 boundown : num [1:30, 1:8, 1:250] 5 5 5 5 5 5 …
 boundratioup : num [1:30, 1:8, 1:250] -5 -5 -5 -5 …
 boundratiodown : num [1:30, 1:8, 1:250] 5 5 5 5 5 5 5 …

